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Abstract
Background To construct and assess a computed tomography (CT)-based deep learning radiomics nomogram 
(DLRN) for predicting the pathological grade of bladder cancer (BCa) preoperatively.

Methods We retrospectively enrolled 688 patients with BCa (469 in the training cohort, 219 in the external test 
cohort) who underwent surgical resection. We extracted handcrafted radiomics (HCR) features and deep learning (DL) 
features from three-phase CT images (including corticomedullary-phase [C-phase], nephrographic-phase [N-phase] 
and excretory-phase [E-phase]). We constructed predictive models using 11 machine learning classifiers, and we 
developed a DLRN by combining the radiomic signature with clinical factors. We assessed performance and clinical 
utility of the models with reference to the area under the curve (AUC), calibration curve, and decision curve analysis 
(DCA).

Results The support vector machine (SVM) classifier model based on HCR and DL combined features was the 
best radiomic signature, with AUC values of 0.953 and 0.943 in the training cohort and the external test cohort, 
respectively. The AUC values of the clinical model in the training cohort and the external test cohort were 0.752 and 
0.745, respectively. DLRN performed well on both data cohorts (training cohort: AUC = 0.961; external test cohort: 
AUC = 0.947), and outperformed the clinical model and the optimal radiomic signature.

Conclusion The proposed CT-based DLRN showed good diagnostic capability in distinguishing between high and 
low grade BCa.
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Introduction
Bladder cancer (BCa) is the tenth most commonly diag-
nosed cancer worldwide, and is more common in men 
than in women [1, 2]. Tumor grade is a crucial prognos-
tic indicator in BCa [3], and has a major impact on treat-
ment decisions and prognosis. High-grade BCa has a 
higher rate of progression and recurrence [3–5]. The pro-
gression and recurrence rates for low-grade tumors were 
4% and 43%, respectively. Corresponding values for high-
grade tumors were 19% and 58% [3]. Patients with low-
grade tumors usually undergo transurethral resection of 
bladder tumor (TURBT) [6], while high-grade tumors 
patients present a higher risk of progression and recur-
rence after TURBT [7], and may need to consider partial 
or radical cystectomy [6, 8]. For the above reasons, pre-
operative determination of pathological grade is essential 
for patients with BCa.

Currently, cystoscopic resection and biopsy still rep-
resent the standard methods for grading BCa [9]. Typi-
cal results from biopsy, however, may lead to diagnostic 
errors attributable to inadequate specimens and tumor 
heterogeneity [10, 11]. Repeated examinations could 
improve the accuracy of the diagnosis, but this procedure 
is undesirable because of its invasive nature and carries 
substantial risks of bladder perforation [12]. The develop-
ment of a non-invasive preoperative evaluation method 
would greatly benefit the management of patients with 
BCa.

Computed tomography (CT) examination is a com-
mon method for the preoperative evaluation of BCa 
patients. However, tumor heterogeneity cannot be reli-
ably assessed with the naked eye [13]. Radiomics is an 
image analysis approach that can extract a large number 
of quantitative features from medical images, and that 
supports quantitative expression of tumor heterogeneity 
[14]. Recently, it has attracted much attention in predict-
ing tumor stage, pathological grade, lymph node metas-
tasis, muscle-invasive status, and therapeutic response 
associated with BCa [13, 15–19].

Deep learning (DL) is an emerging technology with 
great promise, which can build a model using effective 
feature data extracted from images to reflect the corre-
lation between image information and specific diseases 
[18]. This model-based technology can improve the 
prediction of disease characteristics [20]. CT-based DL 
models implemented by convolutional neural networks 
(CNN) have shown great potential in evaluating treat-
ment response, and in predicting muscular invasiveness 
of BCa [18, 19]. However, there are no reports on CT-
based DL models for the prediction of BCa grade using 
data from a multicenter study. To address this lack of 
knowledge in the literature, we constructed a CT-based 
DL radiomics nomogram (DLRN) to predict the histo-
pathological grade of BCa preoperatively.

Patients and methods
Patients
The review boards of all participating institutions 
approved this retrospective study. The requirement for 
patient informed consent was waived. This study used 
data from three medical centers. We collected BCa 
patients confirmed by pathology who had undergone 
surgical resection between October 2014 and December 
2022. The inclusion criteria were: (1) pathologically con-
firmed BCa grading; (2) CT urography (CTU) during the 
30 days preceding surgery. Patients were excluded if: (1) 
they received preoperative treatment, including chemo-
therapy, radiotherapy, or immunotherapy; (2) they had 
more than one lesion; (3) their preoperative CT image 
was of poor quality; (4) their clinicopathological dataset 
was incomplete; (5) they suffered from other concomi-
tant tumor disease.

We collected 688 patients for this study. Of these, 469 
patients from the Affiliated Hospital of Qingdao Uni-
versity were assigned to the training cohort, and 219 
patients from the Shandong Provincial Hospital Affiliated 
to Shandong First Medical University and from Puyang 
Oilfield General Hospital were assigned to the external 
test cohort.

CT examinations
All enrolled patients underwent CTU examinations. 
Table S1 details the settings adopted for CT scanning. 
Enhanced scans acquired images of corticomedullary-
phase (C-phase), nephrographic-phase (N-phase), and 
excretory-phase (E-phase) at (respectively) 25 s, 75 s, and 
300 s after the bolus-triggering threshold of 120 HU was 
reached in the thoracoabdominal aorta junction.

Collection and evaluation of clinical and CT features
We analyzed both clinical and CT features obtained from 
patients, including age, gender, TNM stage, size, shape, 
boundary, calcification, cystic necrosis, stalk, extramural 
infiltration, regional lymph node metastasis, lesion CT 
value in corticomedullary-phase (LCTV-C), lesion CT 
value in nephrographic-phase (LCTV-N), and lesion CT 
value in excretory-phase (LCTV-E). Three radiologists, 
who were unaware of the pathological findings before 
the evaluation, separately assessed CT features from CT 
images. In case of disagreement, consensus was reached 
by consultation.

Segmentation of region of interest and extraction of 
radiomics features
Figure  1 shows a flow chart of this study. Two radiolo-
gists, who were unaware of the pathological findings, 
manually and independently delineated the region of 
interest (ROI) on the three-phase images using ITK-
SNAP software (version 3.8.0, http://www.itksnap.org). 

http://www.itksnap.org
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We randomly selected 94 lesions to be re-segmented 
by the two radiologists, and the same procedure was 
repeated by one of the radiologists 3 weeks later to assess 
intra- and interclass correlation coefficients (ICCs).

We used the Python package Pyradiomics (version 
3.0.1) to extract handcrafted radiomics (HCR) features 
from ROI. High-pass or low-pass wavelet filters and 
Laplacian of Gaussian filter with different λ parameters 
were used to preprocess the original images to enhance 
the recognition of features. Based on original and prepro-
cessed images, we obtained 3948 HCR features from the 
ROIs of the three-phase images, including 756 first-order 
features, 42 shape-based features and texture features, 
including1008 gray-level co-occurrence matrix (glcm) 
features, 672 Gy-level run-length matrix (glrlm) features, 
672 Gy-level size zone matrix (glszm) features, 588 Gy-
level dependence matrix (gldm) features, 210 neighbor-
ing grey tone difference matrix (ngtdm) features, and 
among them, there are 2232 wavelet-based features.

We selected the ResNet18 network pre-trained on the 
ImageNet database for DL-based feature extraction. The 
original images were resized to 224 × 224 pixels before 
training. The model was trained using the stochastic 
gradient descent optimizer with an initial learning rate 
of 3 × 10− 4, decayed by the cosine annealing algorithm 
for 22 epochs, and a batch size of 256. We used the fixed 
network parameters after model training as feature 
extractors. More specifically, we used the output of the 

penultimate layer of the trained CNN to define DL fea-
tures. We trained the model separately on three-phase 
images using the same approach. ResNet18 extracted 
1536 features from the ROIs of the three-phase images 
for each patient.

Image normalization methodology
We adopted a combat compensation methodology to 
retain the specific characteristics of texture patterns. This 
approach removed differences in radiomic features asso-
ciated with different scanners, scanning protocols, and 
parameter settings [21]. In this study, we used combat 
compensation methodology to reduce the inconsistencies 
of multi-center radiomic features. We then normalized 
all features via Z scoring.

Feature selection and construction of machine learning 
models
To reduce the dimensionality of high-dimensional fea-
tures, we adopted the following procedure. First, our 
analysis only retained HCR features for which ICCs were 
> 0.8. Second, we screen features using the least absolute 
shrinkage and selection operator (LASSO) algorithm. 
Finally, we constructed predictive models based on HCR 
features, DL features. We construct machine learning 
models using 11 machine learning classifiers, includ-
ing logistic regression (LR), NaiveBayes, support vec-
tor machine (SVM), K nearest neighbor (KNN), Light 

Fig. 1 Flow chart of this study
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Gradient Boosting Machine (LightGBM), RandomForest, 
eXtreme Gradient Boosting (XGBoost), GradientBoost-
ing, extremely randomized trees (ExtraTrees), Ada-
Boost, and Multi-Layer perceptron (MLP). We adopted 

the 10-fold cross-validation approach to train classifiers 
on the training cohort. To evaluate model capability for 
grading BCa, we relied on the area under the receiver 
operating characteristic (ROC) curve (AUC) and on 
accuracy. Based on these metrics, we selected the best 
machine learning model.

Clinical model and nomogram construction
We used univariate logistic regression to select clini-
cal and CT features associated with BCa grading. We 
included variables with p < 0.05 for multivariate logistic 
regression. We then built a clinical model using features 
with p < 0.05 of multivariate logistic regression. We com-
bined factors from the clinical model with the radiomic 
signature of the best machine learning model to build 
a DLRN. We used the likelihood ratio test based on the 
Akaike information criterion to identify factors associ-
ated with BCa grading. We used the ROC curve to evalu-
ate the diagnostic capability of both clinical model and 
DLRN applied to the two data cohorts. We inspected 
calibration curves to judge goodness of fit of the DLRN. 
We assessed clinical utility using decision curve analysis 
(DCA). We applied the DeLong test to compare differ-
ences in AUC values across models.

Follow-up surveillance
All patients were followed up postoperatively every 3–6 
months during the first 2 years, and annually thereaf-
ter. The duration of progression-free survival (PFS) was 
defined as the time between patients undergoing surgery 
and detection of local recurrence, the last follow-up, or 
death. The deadline for follow-up was January 12, 2023.

Statistical analysis
We used SPSS software (version 26.0, IBM) to analyze the 
differences in clinical and CT characteristics of patients. 
Python (version 3.9.7, www.python.org) was used for 
building machine learning models. The model perfor-
mance was evaluated using R software (version 4.2.2, 
www.r-project.org). To compare clinical and CT data 
between the two cohorts, we applied Mann-Whitney U 
tests, Fisher’s exact tests, or Chi-squared tests as appro-
priate. We adopted p < 0.05 to define statistically signifi-
cant differences. We relied on the Kaplan-Meier method 
and log-rank tests to evaluate the PFS probability of 
patients in the different risk groups.

Results
Clinical and CT characteristics
Table  1 lists clinical and CT characteristics of patients 
in the two data cohorts. We measured significant dif-
ferences in gender, T stage, shape, size, boundary, stalk, 
LCTV-C, LCTV-N, and LCTV-E between the two 

Table 1 Clinical and CT characteristics for patients
Characteristics Training cohort

(n = 469)
External test 
cohort
(n = 219)

p 
value

Age (y)
Median (IQR)

66(59–74) 65(58–72) 0.083

Gender
Male
Female

469(100.0)
0(0.0)

175(79.9)
44(20.1)

<0.001

Grade
Low grade
High grade

170(36.2)
299(63.8)

87(39.7)
132(60.3)

0.380

T stage
≤ T1
>T1

306(65.2)
163(34.8)

170(77.6)
49(22.4)

0.001

 N stage
N0
N1
N2
N3

436(93.0)
22(4.7)
8(1.7)
3(0.6)

213(97.3)
4(1.8)
1(0.5)
1(0.5)

0.137

M stage
M0
M1

466(99.4)
3(0.6)

219(100.0)
0(0.0)

0.555

Shape
Cauliflower
Papillary
Irregular

228(48.6)
116(24.7)
125(26.7)

167(76.3)
33(15.1)
19(8.7)

<0.001

Size (cm)
Median (IQR)

3.0(1.9–4.5) 2.4(1.7–3.4) <0.001

Calcification
No
Yes

395(84.2)
74(15.8)

186(84.9)
33(15.1)

0.811

Cystic necrosis
No
Yes

429(91.5)
40(8.5)

195(89.0)
24(11.0)

0.307

Boundary
No
Yes

186(39.7)
283(60.3)

7(3.2)
212(96.8)

<0.001

Stalk
No
Yes

375(80.0)
94(20.0)

81(37.0)
138(63.0)

<0.001

Extramural infiltration
No
Yes

412(87.8)
57(12.2)

195(89.0)
24(11.0)

0.651

RLN metastasis
No
Yes

446(95.1)
23(4.9)

214(97.7)
5(2.3)

0.105

LCTV-C (HU)
Median (IQR)

58.6(47.0–73.0) 67.0(58.0–
81.0)

<0.001

LCTV-N (HU)
Median (IQR)

73.0(63.0-86.3) 75.0(65.0–
91.0)

0.029

LCTV-E (HU)
Median (IQR)

72.1(62.0–85.0) 76.0(63.0–
95.0)

0.006

IQR, interquartile; RLN, reginal lymph node; LCTV-C, lesion CT value in 
corticomedullary-phase; LCTV-N, lesion CT value in nephrographic-phase; 
LCTV-E, lesion CT value in excretory-phase

http://www.python.org
http://www.r-project.org
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cohorts. The remaining characteristics were not statisti-
cally significant between the two cohorts.

Construction of clinical model
Table  2 lists positive results for clinical and CT charac-
teristics from univariate and multivariate logistic regres-
sion analysis. Multivariate logistic regression identified 
age, size, shape, boundary, stalk, and extramural infiltra-
tion as independent predictors of BCa grade. AUC values 
for the clinical model applied to training and external test 
groups were 0.752 and 0.745, respectively.

Construction and evaluation of radiomic signature
We retained 2636 HCR features with ICCs > 0.80. We 
combined these features with 1536 DL features for sub-
sequent analysis, and reduced their dimensionality using 
the LASSO algorithm (Fig.  2). We selected the 60 most 
significant features and incorporated them into the 
model combining DL features and HCR features (DLR 
model). These features included 25 HCR features and 35 
DL features. Of these, the DL features carried largest pre-
dictive weight (Fig. 3a). We constructed predictive mod-
els using 11 machine learning algorithms. Table 3 details 
the predictive performance of the DLR-based signature 
for identifying pathological grade of BCa. Table S2 pro-
vides additional details on prediction via HCR features 
and DL features. The MLP classifier model produced the 
best predictive performance with reference to the HCR 
signature (AUC values of 0.850 and 0.848, and accuracy 
values of 0.780 and 0.790, for training and external test 
groups, respectively). The NaiveBayes classifier model 
produced the best predictive performance with refer-
ence to the DL signature (AUC values of 0.843 and 0.882, 
and accuracy values of 0.778 and 0.813, for training and 

external test groups, respectively). When applied to the 
external test group, the DLR-based SVM classifier out-
performed the signatures based on HCR features and DL 
features. This was the best machine learning model, with 
an AUC value of 0.943 and an accuracy of 0.840 (Table 3; 
Fig.  3b). A DeLong test indicated that the AUC values 

Table 2 Positive results of univariate and multivariate logistic 
regression for clinical and CT characteristics in patients
Variable Univariate Multivariate

OR (95% CI) p value OR (95% CI) p 
value

Age 1.038(1.020–1.057) <0.001 1.032(1.012–
1.051)

0.001

Size 1.408(1.253–1.582) <0.001 1.277(1.119–
1.457)

<0.001

Shape 1.374(1.091–1.732) 0.007 1.565(1.188–
2.062)

0.001

Boundary 0.618(0.421–0.906) 0.014 0.503(0.324–
0.780)

0.002

Cystic 
necrosis

3.507(1.441–8.535) 0.006 1.058(0.378–
2.964)

0.914

Stalk 0.414(0.262–0.656) <0.001 0.575(0.341–
0.969)

0.038

Extramural 
infiltration

8.941(3.176–25.175) <0.001 4.296(1.369–
13.479)

0.012

RLN 
metastasis

13.422(1.793-100.489) 0.011 5.819(0.696–
48.658)

0.104

LCT V-C 1.012(1.003–1.021) 0.010 1.009(0.997–
1.020)

0.143

LCTV-N 1.015(1.004–1.026) 0.006 1.010(0.995–
1.025)

0.198

LCTV-E 1.011(1.002–1.021) 0.020 0.999(0.988–
1.010)

0.905

OR, odds ratio; CI, confidence interval; RLN, reginal lymph node; LCTV-C, lesion 
CT value in corticomedullary-phase; LCTV-N, lesion CT value in nephrographic-
phase; LCTV-E, lesion CT value in excretory-phase

Fig. 2 Feature screening utilizing LASSO algorithm. The cross-validation plot (a) and the coefficient profile plot (b)
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for the DLR-based SVM classifier and the clinical model 
were significantly different between the two cohorts 
(training cohort: p < 0.001, external test cohort: p = 0.042).

Evaluation of nomogram and patient risk stratification
The DLRN was built using the clinical model and the sig-
nature from the DLR-based SVM classifier (Fig.  3c). Its 
prediction efficiency is shown in Table 4. DLRN outper-
formed both the optimal machine learning model and 
the clinical model. Figure  4 shows calibration curves 
and DCA of DLRN. They reveal good calibration and 
clinical utility of this nomogram. Figure 5 shows Kaplan-
Meier survival curves of DLRN for predicting PFS in BCa 
patients. For the total cohort and training cohort, the 
pathological report grading model and DLRN could sig-
nificantly stratify patients for PFS, however this was not 
the case for the external test cohort.

Table 3 Performance of different machine learning algorithms 
with reference to the DLR signature

Training cohort External test cohort
AUC (95% CI) Accuracy AUC (95% 

CI)
Accu-
racy

LR 0.931(0.909–
0.954)

0.864 0.856(0.805–
0.907)

0.776

NaiveBayes 0.854(0.819–
0.889)

0.787 0.884(0.836–
0.932)

0.804

SVM 0.953(0.931–
0.974)

0.902 0.943(0.916–
0.970)

0.840

KNN 0.899(0.873–
0.925)

0.819 0.799(0.740–
0.859)

0.790

RandomForest 0.999(0.997-1.000) 0.983 0.778(0.718–
0.837)

0.703

ExtraTrees 1.000(nan-nan) 1.000 0.828(0.775–
0.881)

0.744

XGBoost 1.000(nan-nan) 0.998 0.850(0.796–
0.904)

0.785

LightGBM 0.986(0.979–
0.993)

0.887 0.821(0.766–
0.875)

0.667

GradientBoost-
ing

0.936(0.915–
0.958)

0.832 0.817(0.756–
0.877)

0.676

AdaBoost 0.872(0.840–
0.904)

0.808 0.636(0.561–
0.711)

0.644

MLP 0.959(0.943–
0.975)

0.891 0.878(0.835–
0.922)

0.781

AUC, area under the curve; CI, confidence interval; LR, logistic regression; 
SVM, support vector machine; KNN, K nearest neighbor; ExtraTrees, extremely 
randomized trees; XGBoost, eXtreme Gradient Boosting; LightGBM, Light 
Gradient Boosting Machine; MLP, Multi-Layer perceptron

Table 4 Predictive performance of clinical model, the optimal 
machine learning model, and DLRN.
Model Training cohort External test cohort

AUC (95% CI) Accuracy AUC (95% CI) Accu-
racy

Clinical model 0.752(0.707–
0.797)

0.723 0.745(0.678–
0.813)

0.708

Optimal ML 
model

0.953(0.931–
0.974)

0.902 0.943(0.916–
0.970)

0.840

DLRN 0.961(0.944–
0.979)

0.919 0.947(0.921–
0.973)

0.854

AUC, area under the curve; CI, confidence interval; ML, machine learning; DLRN, 
deep learning radiomics nomogram

Fig. 3 Feature weight histogram of the features used in this study (a). Accuracy histogram of different machine learning models based on DLR (b). No-
mogram of the training cohort (c)
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Discussion
In this study, we built and tested a nomogram based on 
CT radiomic features that combined clinical features 
with the DLR signature for prediction of BCa patho-
logical grade. Compared with the clinical model and the 
radiomics signature, DLRN was associated with superior 
diagnostic capability (AUC values of 0.961 and 0.947, 
accuracy values of 0.919 and 0.854 for training and exter-
nal test cohorts, respectively). This nomogram dem-
onstrated good calibration ability and clinical benefits, 

indicating that it may represent a helpful preoperative 
tool for clinical decision making. In addition, the nomo-
gram showed good stratification ability for PFS.

Tumor grade is a critical element for determining ther-
apy and prognosis [22]. This element is crucial for the 
choice of treatment modality in BCa patients. The results 
obtained via biopsy sometimes misrepresent the tumor 
[9], producing a lower grade than the actual grade of the 
lesion. By integrating the DLR signature with clinical fea-
tures, DLRN presents substantial potential for identifying 

Fig. 4 Calibration curves (a, b) of deep learning radiomics nomogram for training and external test cohorts. Decision curve analysis for different models 
(c)
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Fig. 5 Survival analysis of the pathological report grading model (a) and the deep learning radiomics nomogram (b). Survival analysis of the pathological 
report grading model (c, d) and the deep learning radiomics nomogram (e, f) for training and external test cohorts
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the pathological grade of BCa preoperatively, and for aid-
ing patient management.

In current clinical practice, MRI is widely used to 
evaluate BCa as a noninvasive imaging tool. A previous 
study [23] used radiomics based on diffusion-weighted 
imaging and apparent diffusion coefficient maps to grade 
BCa. This study pointed out that a radiomics strategy 
may improve BCa grading preoperatively. However, the 
study did not assess a validation cohort. Wang et al. [9] 
constructed a multiparametric MRI-based radiomics 
method, which showed good performance when applied 
to the validation group (AUC values of 0.9186–0.9276). 
However, this study relied on a small sample size. Zheng 
et al. [24] used the radiomics signature and the Vesical 
Imaging-Reporting and Data System score to construct 
a nomogram for BCa grading. Their nomogram showed 
good diagnostic ability (AUC values of 0.956 and 0.958 
for training and validation sets, respectively). Addition-
ally, a previous study [25] showed that it is feasible to 
apply CT texture analysis to identify BCa grading. Zhang 
et al. [13] built a radiomics model based on CT images 
for predicting BCa grading, which achieved a fairly 
good diagnostic efficiency when applied to both train-
ing (AUC = 0.950) and validation groups (AUC = 0.860). 

However, the studies mentioned above were single-center 
studies without external validation, and only focused on 
HCR features from imaging.

DL is a new technique for image analysis. Several stud-
ies [18, 19, 26] have demonstrated the value of DL mod-
els based on CT image in diagnosis and management 
of BCa. Compared with previous studies, we extracted 
DL features to explore the feasibility of applying a DL 
approach for distinguishing between high and low grade 
BCa, and then combined DL features with HCR fea-
tures to predict BCa grading. Among the 60 features 
screened in this study, including 25 HCR features and 35 
DL features, the DL features carried the largest weight, 
suggesting that the DL technique may have extracted 
quantitative information reflecting BCa grade. The CNN 
activation maps contained important regions related to 
tumor grade. These regions can be used to identify tumor 
grade via their association with high-grade tumors, and 
their suppression for low-grade tumors (Fig.  6). Among 
the selected 25 HCR features, wavelet features accounted 
for the largest proportion (20/25), and “wavelet_ngtdm ” 
feature carried the largest weight. Wavelet features could 
be used to reflect tumor heterogeneity through multi-
scale wavelet transform, overcoming the limitations of 

Fig. 6 Activation maps of the deep convolutional neural networks for high versus low grade bladder cancer, reflected the weights corresponding to 
different pathological grades of tumors. These maps were constructed using data from the corticomedullary phase, nephrographic phase, and excretory 
phase. Red areas indicate higher correlation with tumor grade
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visual inspection [27]. A previous study [28] showed that 
wavelet-based features can support tumor grade clas-
sification. The diagnostic capability of the model reliant 
on both HCR features and DL features was superior to 
that associated with models that relied on HCR features 
or DL features separately. The signature based on DL fea-
tures was superior to that based on HCR features, dem-
onstrating the value of the DL approach for grading BCa.

In this study, we used three-phase CT images (includ-
ing C-phase, N-phase, and E-phase), and collected almost 
all available CT information from patients. In terms of 
feature selection, LASSO carries the advantages of ridge 
regression analysis and good subset screening perfor-
mance [29]. Efficient and reliable machine learning meth-
ods are helpful for promoting the successful application 
of radiomics in clinical practice, and it is critically impor-
tant to identify the best machine learning approaches for 
radiomics strategy [30]. We selected 11 classifier algo-
rithms to increase the reliability of our study (LR, Naive-
Bayes, SVM, KNN, RandomForest, ExtraTrees, XGBoost, 
LightGBM, GradientBoosting, AdaBoost, and MLP). 
SVM algorithm can generally provide better classification 
because it utilizes the available information to achieve 
the optimal results, and seems to be superior to a gener-
alization capability when dealing with unseen data [31]. 
The results of this study showed that the signature from 
the DLR-based SVM classifier produced the largest AUC 
and accuracy values among all machine learning models. 
This was the best machine learning model in our study.

We also evaluated the capability of the DLRN model 
for predicting the prognosis of BCa patients. High-grade 
BCa carries a poor prognosis, and higher tumor grade is 
an independent risk factor for cancer-specific survival in 
BCa patients [3, 32]. Previous studies have demonstrated 
the value of radiomic features for survival analysis of BCa 
patients. Zhang et al. [33] indicated that the radiomics 
signature was independently associated with PFS in BCa 
patients. Piotr et al. [34] found that preoperative CT-
based radiomic features could predict overall survival 
of BCa. We found that the pathological report grading 
model and DLRN presented good prognostic risk strati-
fication capability in all patients, indicating that the pro-
posed DLRN may carry substantial potential for aiding 
long-term management of BCa patients. The pathological 
report grading model and DLRN present significant dif-
ferences in risk stratification when applied to the training 
cohort, but not with respect to the external test cohort. 
In all patients, the median PFS times of high-risk and 
low-risk patients predicted by the pathological report 
grading model were 63 months and 60 months, respec-
tively. The external test cohort did not include any patient 
with PFS > 50 months. In addition, there were 61 patients 
with PFS ≥ 40 months in the training cohort, but only 
23 patients with similar PFS values in the external test 

cohort. These results suggest that the follow-up time of 
the external test cohort may have been relatively short. In 
turn, this means that our study was subject to group bias, 
and that patients in the total cohort and training cohort 
may better reflect the real PFS of patients.

Our study presents some additional limitations. First, 
because of its retrospective nature, this study may be 
affected by selection bias. Therefore, prospective studies 
will be necessary to verify the predictive capability of our 
model. Second, this study relied on manual segmentation 
of tumors, which involved substantial differences across 
observers. A recent study [35] showed that automatic 
segmentation achieved good performance. We there-
fore plan to adopt automatic segmentation in the future. 
Third, this study only included some baseline clinical 
data of patients, and the remaining clinical data and bio-
chemical indicators were not collected. Additionally, the 
MRI data of patients were not analyzed. In the future, it 
will be necessary to develop a complex prediction model 
with multi-dimensional information.

Conclusion
In summary, our DLRN model successfully predicted the 
pathological grade of BCa and may provide strong sup-
port for the development of individualized treatment 
plans for BCa patients.
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