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Abstract
Background The current study aimed to construct and validate a magnetic resonance imaging (MRI)-based 
radiomics nomogram to predict tumor protein p53 gene status in rectal cancer patients using machine learning.

Methods Clinical and imaging data from 300 rectal cancer patients who underwent radical resections were included 
in this study, and a total of 166 patients with p53 mutations according to pathology reports were included in these 
patients. These patients were allocated to the training (n = 210) or validation (n = 90) cohorts (7:3 ratio) according to 
the examination time. Using the training data set, the radiomic features of primary tumor lesions from T2-weighted 
images (T2WI) of each patient were analyzed by dimensionality reduction. Multivariate logistic regression was used 
to screen predictive features, which were combined with a radiomics model to construct a nomogram to predict p53 
gene status. The accuracy and reliability of the nomograms were assessed in both training and validation data sets 
using receiver operating characteristic (ROC) curves.

Results Using the radiomics model with the training and validation cohorts, the diagnostic efficacies were 0.828 
and 0.795, the sensitivities were 0.825 and 0.891, and the specificities were 0.722 and 0.659, respectively. Using the 
nomogram with the training and validation data sets, the diagnostic efficacies were 0.86 and 0.847, the sensitivities 
were 0.758 and 0.869, and the specificities were 0.833 and 0.75, respectively.

Conclusions The radiomics nomogram based on machine learning was able to predict p53 gene status and facilitate 
preoperative molecular-based pathological diagnoses.
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Background
Rectal cancer is one of the most common digestive tract 
malignancies [1], with approximately 1.4  million new 
diagnoses and 700,000 deaths worldwide each year. The 
incidence of rectal cancer has been reported as high as 
6%, and the five-year survival rate is only 40–60% [2]. 
Molecular features of rectal cancer related to the tumor 
microenvironment, such as extramural venous invasion 
(EMVI), tumor protein p53, and cell proliferation antigen 
Ki67 levels, are of great interest due to their correlation 
with prognostic indicators, such as tumor aggressiveness 
and recurrence risk [3].

Wild-type p53 is an important tumor suppressor gene 
[4]. However, a mutated version of p53 is found in many 
human cancers [5], and upon gene mutation or dele-
tion, p53 becomes pro-tumorigenic [6]. Previous studies 
have shown that p53 plays a role in predicting the effec-
tiveness of neoadjuvant therapy for rectal cancer [7]. In 
addition, there is a significant correlation between the 
mutation status of p53 according to gene sequencing 
analysis and overall survival as well as metastasis-free 
survival of patients with rectal cancer. Therefore, evalu-
ating p53 gene status is important to accurately deter-
mine the prognosis of patients with colorectal cancer [8]. 
Unfortunately, determining the p53 gene status depends 
primarily on immunohistochemistry, which limits the 
prevalence of its detection.

Currently, magnetic resonance imaging (MRI) has 
the advantage of high soft tissue resolution, and it has 
become the first choice for early overall non-invasive 
evaluation for preoperative staging of rectal cancer [9, 
10]. Importantly, there have been some tentative studies 
that also use MRI to assess p53 gene status. For example, 
Li et al. found that high expression of p53 was correlated 
with a low tumor enhancement/T2 ratio [11]. In addition, 
another study revealed that magnetic resonance spec-
troscopy (MRS) and diffusion weighted imaging (DWI) 
may be able to accurately reflect p53 status [12], but a 
visual evaluation of these images may not be enough to 
identify p53 gene status. Therefore, an objective and non-
invasive method to accurately evaluate p53 gene status 
prior to surgery is still required.

Radiomics is a relatively new field that uses emerg-
ing technologies to extract features from medical imag-
ing, quantifying its phenotypic characteristics in a 
high-throughput manner [13]. Such features may help 
in prognosticating, predicting treatment outcomes, and 
assessing tissue malignancy in cancer research [14, 15]. 
Previous studies have shown that MRI-based radiomics 
can be used to evaluate the gene status of p53 in gliomas 
[16]. However, there have not been any studies using 
MRI to predict p53 gene status in rectal cancer. In addi-
tion, previous studies have shown that machine learning 

models can more accurately predict p53 gene mutations 
in low-grade gliomas and pancreatic cancer [16, 17].

Therefore, this study aimed to use machine learning to 
build a radiomics signature that could predict p53 gene 
status in rectal cancer. The radiomics signature could 
then be combined with clinical features to build a visual-
ized nomogram to evaluate p53 gene status.

Materials and methods
Patient data
This retrospective study was approved by the Ethics 
Committee of Zhejiang Provincial People’s Hospital and 
informed consent was obtained. A total of 1056 rectal 
cancer patients in the picture archiving and communica-
tion system with a definitive clinical diagnosis between 
February 2018 and May 2022 were identified. Next, 
the clinical and radiology data from 300 patients were 
selected for retrospective analysis according to the inclu-
sion and exclusion criteria. The inclusion criteria were: 
(1) diagnosis of rectal cancer by pathological examina-
tion; (2) lack of immunotherapy or neoadjuvant chemo-
radiotherapy; and (3) surgery was performed within one 
month after examination by MRI. The exclusion criteria 
were: (1) poor MRI quality or the lesions were poorly dis-
played; (2) lack of pathological results upon resection. All 
patients were allocated at a 7:3 ratio to either the training 
(n = 210) or validation (n = 90) cohort according to when 
their examination was completed (i.e.: the training group 
was filled first, then the validation group). The training 
data set was used to build the radiomics model, and the 
validation data set was used to verify the performance of 
the model.

Immunohistochemistry of p53
Paraffin-embedded tissue sections were deparaffinized 
in a series of gradient ethanol baths, rehydrated, and 
immersed in methanol containing 0.3% hydrogen perox-
ide for 10 min to block endogenous peroxidase at room 
temperature. Subsequently, the tissue-slides were heated 
for 30 min in a pH 6.0 antigen retrieval solution to induce 
antigen retrieval and then incubated overnight with an 
anti-P53 antibody at 4 °C. Staining was performed using a 
Prolink-2 Plus HRP rabbit polymer detection kit (Golden 
Bridge, Bothell, WA, USA) according to the manufac-
turer’s instructions. Images were captured using Aperio 
ScanScope CS software (Aperio Technologies, Vista, CA, 
USA).

The results were evaluated based on the intensity 
and extent of staining by two independent pathologists 
(double blinded) as described previously. Briefly, the P53 
positive staining area was scored as follows: the stain-
ing percentage of positively stained area over total tis-
sue area was defined as 0 = ≤ 5%; 1 = 5–25%; 2 = 26–50%; 
3 = 51–75%; and 4 ≥ 75%. The intensity was graded as 
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follows: 0, negative; 1+, weak (yellow); 2+, moderate 
(light brown); and 3+, strong (dark brown). A final score 
between 0 and 12 was achieved by multiplication of the 
staining area and intensity scores. A staining index was 
used in which a score of 0–2 was considered negative 
expression, 3–6 was considered low expression, and ≥ 6 
was considered high expression.

Evaluation of baseline clinical characteristics
The clinical and histopathological data of all patients 
were reviewed and recorded from the patients’ electronic 
medical records, and included sex, age, carcinoembry-
onic antigen (CEA) levels (abnormal: > 5 ng/mL), and 
pathological p53 gene status. The clinical imaging fea-
tures were obtained by consulting the structured MRI 
rectal examination report, and included tumor node 
metastasis (TNM) staging, distance from the end of the 
convex edge of the tumor to the edge of the anus (DIS), 
circumferential resection margin (CRM) status, and pres-
ence of EMVI. A positive CRM status was defined as 
tumor, metastases, metastatic lymph nodes, or intramus-
cular vascular invasion within 1  mm of the mesenteric 
fascia. EMVI was defined as (a) presence of tumor signal 
intensity within a vascular structure, (b) expanded ves-
sels, (c) tumoral expansion through and beyond the ves-
sel wall, and (d) disrupting the vessel border.

All data were assessed independently by two experi-
enced radiologists in a double-blind setting. Radiologist 
A had three years of experience and Radiologist B had 
ten years of experience in abdominal imaging. Consensus 
was reached in all cases of disagreement after all assess-
ments were completed.

Image pre-processing
All patients underwent rectal MRI in a supine position 
using 3.0T MRI systems (Skyra; Siemens Healthineers) 
equipped with an eight-channel phased-array coil. In 
this study, we only used T2-weighted images (T2WI) to 
extract radiomics features. Not only do T2WI provide 
clear images of tumor structures that can easily delin-
eate regions of interest, but their high spatial resolution 
also reduces the impact of image quality on the extracted 
radiomics features. Export T2WI data for each patient 
from the Picture Archiving and Communication System 
(PACS), and then import it into non-commercial Artifi-
cial Intelligence Kit software (AK, GE Healthcare, China) 
for preprocessing of T2WI. Image preprocessing was 
performed by resampling the images with a resolution of 
1 × 1 × 1 mm3 using the linear interpolation method. The 
image gray level was discretized and normalized to order 
32. Next, the preprocessed T2WI were imported into 
ITK-SNAP software (www.itksnap.org) to segment the 
entire rectal tumor layer by layer to obtain the volume 
of interest (VOI) [18]. Blood vessels and necrotic tissues 

were avoided. Finally, the VOI was imported into the AK 
software for feature extraction.

Acquisition and selection of radiomics features
A total of 930 features were extracted from the T2WI 
of each patient, and specific feature information can be 
found in Supplementary Materials Table S1. To ensure 
the stability and accuracy of features extracted from the 
VOIs, the two radiologists who previously evaluated the 
clinical features manually and independently performed 
the tumor segmentation. Feature set A and feature set 
B were obtained from radiologist A and radiologist B, 
respectively. Spearman rank correlation was used to 
determine the correlation coefficient (CC) of each fea-
ture between set A and set B. The features with a CC > 0.8 
were considered robust.

Optimal features among the robust features were 
obtained by dimensionality reduction based on the train-
ing set. Firstly, analysis of variance was used to calculate 
the variance of each feature. The variance value is calcu-
lated as the average of the squared differences between 
each variable’s value and the mean. It is the most impor-
tant method for measuring the dispersion of numerical 
data. The larger the variance, the greater the fluctuation 
of the data, and vice versa. So, it is necessary to elimi-
nate features with a variance of 0 or less as a priority. In 
this study, we calculated the variance of each feature and 
retained the features that were greater than the thresh-
old of 1. Secondly, minimum redundancy maximum rele-
vance (mRMR) was used to extract optimal features. The 
purpose of mRMR was to select features that have the 
greatest correlation with the pathological p53 gene sta-
tus. The radiomics features with an inter class CCs > 0.8 
were retained. Subsequently, to ensure minimal redun-
dancy, intra-class correlation analysis was performed on 
the remaining features, retaining features with an intra 
class CCs ≤ 0.1. Finally, the gradient boosting decision 
tree (GBDT) algorithm was used to reduce the dimension 
of the remaining features.

Nomogram construction and performance evaluation
A support-vector machine (SVM) was used to build the 
signature model based on the final screened features. 
Ten-fold cross-validation involved stratifying and divid-
ing the training data set into ten folds of equal size: eight 
folds (80%) for training, one fold (10%) for tuning model 
parameters, and one fold (10%) for testing. Stratification 
was used to ensure a similar distribution of events across 
the ten folds. This process was repeated for ten iterations, 
always using a different data fold for signature model 
training, tuning, and testing. The data from the training 
subgroup and the data from the tuning model parameters 
subgroup were used to construct a model, resulting in 
100 models. Finally, the data from the test subgroup was 

http://www.itksnap.org
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selected to test the performance of the model. The SVM 
parameters of the model with the highest accuracy were 
then chosen as the final tuning parameters. In this study, 
SVM with a Gaussian kernel function were implemented. 
The cost parameter C was varied with values{2− 2, 2− 1, 1, 
21, 22} and the kernel spread parameter was varied with 
values in {10− 2, 10− 1, 1, 101, 102}. The machine learning 
scores were concatenated from all testing data folds to 
assess the signature model performance over the entire 
data set. The signature model quantified the discrim-
inability as the possibility of a p53 mutation for each 
patient defined as Rad-score. ROC curves were used to 
evaluate the performance of the signature model, and 
the validation data set was used for verification. Next, 
independent predictors from clinical features and the 
rad-score were determined using multiple factor logistic 
regression with a backward stepwise selection method. 
This method ensured that only significant variables were 
included in the regression equation. The process contin-
ued until no significant explanatory variables were added 
to the equation and less significant variables were no lon-
ger eliminated. Akaike information criterion was used to 
evaluate the models. A integrated model was then estab-
lished and a visual nomogram was constructed. Finally, 
the difference between the integrated model and the sig-
nature model was evaluated using the DeLong test, and 
the nomogram goodness-of-fit was assessed using the 
Hosmer-Lemeshow test.  The radiomics workflow was 
shown in Fig. 1.

Statistical analysis
Statistical analyses were performed using MedCalc soft-
ware (version 11.2), Python (version 3.5), R software 
(version 3.4.1) and SPSS (version 24.0). Continuous vari-
ables were compared by independent sample t-test or 

Mann–Whitney U test, and categorical variables were 
compared using a chi-square test. All statistics were two-
sided, and statistical significance was set at P < 0.05.

Results
Baseline demographic and clinical characteristics of 
patients
There was no statistical difference in demographic char-
acteristics or conventional radiology characteristics 
between the training and validation sets (all P > 0.05), 
as shown in Table 1. Additionally, there was no statisti-
cal difference in demographic characteristics and con-
ventional radiology characteristics between mutant and 
wild-type p53 genes in either the training or validation 
data sets (all P > 0.05), as shown in Table 2.

Radiomics feature selection
A total of 930 features were extracted from the images, 
and 912 of these were determined to be robust (CC > 0.8). 
With further screening, 874 features were obtained based 
on the variance results. After mRMR dimensionality 
reduction, 24 features were identified, and finally nine 
features remained after GBDT dimensionality reduction 
(Fig. 2). These nine features listed in Fig. 3 were used to 
build the radiomics model.

Nomogram model construction and evaluation
The area under the curve (AUC) values of receiver oper-
ating characteristic curve (ROC) showed that the diag-
nostic efficacies of the radiomics signature model in the 
training and validation data sets were 0.828 and 0.795, the 
sensitivities were 0.825 and 0.891, and the specificities 
were 0.722 and 0.659, respectively. The calibration curves 
reveal that the predicted p53 gene status of the signature 
model in both the training and verification groups was 

Fig. 1 The radiomics workflow
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in good consistency with the actual p53 gene status, as 
shown in Fig. 4. Multivariate logistic regression showed 
that sex, lymph node metastasis, tumor volume, and rad-
scores were independent predictors of p53 gene status 
(Table  3). The diagnostic efficacies of the nomogram in 
the training and validation data sets were 0.86 and 0.847, 
the sensitivities were 0.758 and 0.869, and the specifici-
ties were 0.833 and 0.75, respectively, as shown in Fig. 5. 
For the nomogram, the results of a Hosmer-Lemeshow 
test suggested no significant deviation (P = 0.123) from an 
ideal fitting.

Discussion
The results of this study showed that a radiomics signa-
ture based on features extracted from T2WI combined 
with machine learning can be used to predict p53 gene 
status in patients with rectal cancer. In addition, a visual 
nomograph was created to ensure that the results of the 
prediction model are easy to comprehend and convenient 
for clinicians to evaluate the p53 gene status of rectal 
cancer patients. As such, this study provides a new tool 
for pathological molecular diagnoses.

Table 1 Clinical features of patients in training and validation cohorts
Characteristics Training cohort (n = 210) Validation cohort (n = 90) P-value
Gender (n, %) Male 148 (70.48) 64 (71.11) 0.912

Female 62 (29.52) 26 (28.89)
CRM status (n, %) Negative 161 (76.67) 67 (74.44) 0.68

Positive 49 (23.33) 23 (25.56)
Mri-EMVI status (n, %) Negative 161 (76.67) 64 (71.11) 0.309

Positive 49 (23.33) 26 (28.89)
ACI status (n, %) Negative 201 (95.71) 83 (92.22) 0.34

Positive 9 (4.29) 7 (7.78)
Lymph Node (n, %) No metastasis 78 (37.14) 33 (36.67% 0.938

Metastasis 132 (62.86) 57 (63.33)
Tumor stage (n, %) T1-T2 63 (30.00) 17 (18.89) 0.046

T3-T4 147 (70.00) 73 (81.11)
Age (years) 64.19 ± 10.47 64.13 ± 9.73 0.965
CEA (ng/mL) 10.13 ± 39.74 12.63 ± 37.67 0.613
Tumor size (cm3) 17.63 ± 20.04 21.63 ± 32.62 0.195
Dis (cm) 8.02 ± 3.77 7.98 ± 3.65 0.934
Abbreviations: CRM, circumferential resection margin; EMVI, extramural vascular invasion; ACI, anal canal invasion; CEA, carcinoembryonic antigen; Dis, distance 
from the end of the convex edge of the tumor to the edge of the anus. Data were presented as counts with percentages or means ± standard deviations

Table 2 Baseline features of p53 status in the training and validation cohorts
Characteristics Training cohort (n = 210) Validation cohort (n = 90)

p53 WT
(n = 90)

p53 Mut
(n = 120)

P- value p53 WT
(n = 44)

p53 Mut
(n = 46)

P- 
value

Gender (n, %) Male 57 (63.33) 91 (75.83) 0.066 33 (75.00) 31 (67.39) 0.426
Female 33 (36.67) 29 (24.17) 11 (25.00) 15 (32.61)

CRM status (n, %) Negative 70 (77.78) 91 (75.83) 0.742 30 (68.18) 37 (80.43) 0.183
Positive 20 (22.22) 29 (24.17) 14 (31.82) 9 (19.57)

Mri-EMVI status (n, %) Negative 71 (78.89) 90 (75.00) 0.51 33 (75.00) 31 (67.39) 0.426
Positive 19 (21.11) 30 (25.00) 11 (25.00) 15 (32.61)

ACI status (n, %) Negative 86 (95.56) 115 (95.83) 0.806 38 (86.36) 45 (97.83) 0.102
Positive 4 (4.44) 5 (4.17) 6 (13.64) 1 (2.17)

Lymph Node (n, %) No met 38 (42.22) 40 (33.33) 0.187 16 (36.36) 17 (36.96) 0.953
Met 52 (57.78) 80 (66.67) 28 (63.64) 29 (63.04)

Tumor stage (n, %) T1-T2 23 (25.56) 40 (33.33) 0.224 10 (22.73) 7 (15.22) 0.363
T3-T4 67 (74.44) 80 (66.67) 34 (77.27) 39 (84.78)

Age (years) 63.57 ± 11.23 64.66 ± 9.89 0.456 64.50 ± 9.36 63.78 ± 10.17 0.729
CEA (ng/mL) 6.41 ± 8.46 12.92 ± 51.98 0.241 17.33 ± 52.44 8.13 ± 11.69 0.249
Tumor size (cm3) 19.79 ± 24.61 16.00 ± 15.70 0.175 22.86 ± 30.02 20.45 ± 35.23 0.728
Dis (cm) 8.27 ± 3.91 7.83 ± 3.67 0.397 7.63 ± 3.80 8.31 ± 3.52 0.382
Abbreviations: WT, wild-type; Mut, mutant; CRM, circumferential resection margin; EMVI, extramural vascular invasion; ACI, anal canal invasion; CEA, carcinoembryonic 
antigen; Dis, distance from the end of the convex edge of the tumor to the edge of the anus. Data were presented as counts with percentages or means ± standard 
deviations
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p53 is an important tumor suppressor gene, and its 
mutation status may be an important factor for early 
diagnosis and treatment of rectal cancer [19]. However, 
using molecular biology techniques to detect p53 gene 
expression and mutations requires substantial time and 
money, so alternative cost- and time-effective imaging 
methods are preferred when possible. One previous study 
confirmed that skewness of magnetic resonance apparent 

diffusion coefficient histogram analysis parameters was 
related to p53 gene status in rectal cancer. In the current 
study, conventional T2WI were used to predict p53 gene 
status, and the AUC values concerning diagnostic effica-
cies of the nomogram in the training and validation sets 
were 0.86 and 0.847, respectively. One heavily weighted 
feature of the nomogram was the first-order skewness 
value, which further confirms that conventional MRI 

Fig. 2 Process of heat map for dimension reduction. The x-axis represents feature ordering, the y-axis represents 300 case sequencing, and the color 
represents feature value size. (A) Features selected based on analysis of variance, and the X-axis is 874 features. (B) Features extracted from the correlation 
analysis with clinical outcomes, The X-axis has 476 features. (C) Features extracted from the correlation analysis between features, The X-axis number is 
24 features. (D) The remaining features after dimensionality reduction using a gradient boosted decision tree (GBDT), The X-axis number is 9 features
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images contain information suggestive of p53 gene sta-
tus. As a conceptual design, this study may also provide 
a useful tool for screening high-risk populations with P53 
mutation in clinical practice.

Previously, both computed tomography (CT)- and 
MRI-based radiomics have been used to predict p53 
status in different cancers. Iwatate et al. established 
a CT-based radiologic model to predict p53 status in 
pancreatic cancer [17], while Sun et al. established an 
MR-based radiologic model to predict p53 status in gli-
omas [20]. Lin et al. extracted radiologic features from 
T1-weighted sagittal dynamic contrast-enhanced MRI 
to predict changes in the p53 mutation status in breast 
cancer [21]. Although these studies have confirmed the 
accuracy of radiomics models in predicting p53 status in 
tumors, it should be noted that all of these studies were 
based on CT imaging, while our current study employed 
MRI to predict p53 mutation status in rectal cancer. In 
comparison to CT, MRI offers advantages such as high 
resolution of soft tissue and no ionizing radiation. Impor-
tantly, our study used non-enhanced MRI images, which 
eliminates the potential risks associated with contrast 
agents used in dynamic enhanced MRI.

The results of the current study also showed that tumor 
size, lymph node metastasis, sex, and the radiomics sig-
nature were independent predictive factors of the p53 
mutation status. Xu et al. determined that tumor size is 
the primary radiomic prognostic and predictive feature 
of microvascular invasion in hepatocellular carcinoma 
and is independently associated with disease recur-
rence and mortality [22]. Zhang et al. found that p53 
status was positively related to lymph node metastasis in 
lung cancer [23], which further confirmed that p53 sta-
tus might be closely related to lymph node metastasis in 
rectal cancer. However, it should be noted that Pan et al. 
showed that p53 gene mutations in rectal cancer had no 

correlation with tumor size or lymph node metastasis 
[24]. We suspect that this discrepancy may be due to the 
differences in sample size, since the Pan et al. study only 
included 97 cases, which is far less than the number of 
cases assessed in the current study. In addition, a sepa-
rate study found that gender was important to include 
in a predictive model for bladder cancer recurrence [25]. 
Gasinska et al. found that a predictor of long-term over-
all survival to be male rectal cancer patients negative for 
p53 [26]. A study by Rockwell et al. discovered that in 
patients with a glioblastoma, p53 mutations showed sex 
differences in frequency [27]. The analysis of three p53 
genes with repeated mutations revealed a unique correla-
tion between sex and p53 gene mutations using male and 
female primary mouse astrocytes. Together, these results 
suggest a possible association between gender and p53 
gene status.

In this study, SVM was used to construct the prediction 
signature. The kernel function in SVM maps the input 
parameters to different feature spaces, which can divide 
the transformed data to achieve more accurate results, 
improve the robustness of the model, and avoid over fit-
ting in the training process. Especially for research with 
limited cases, SVM is considered the best choice to bal-
ance the variance and bias of input data [28–30]. Wang et 
al. used clinical and CT-based radiomics multiparameter 
methods to predict p53 gene expression in patients with 
giant cell tumors of the spine, and the results revealed 
that the SVM model performed well (AUC = 0.79) [31]. 
The current study also confirmed this, as the prediction 
model constructed using SVM could distinguish the 
p53 gene status in rectal cancer patients (training set, 
AUC = 0.828; validation set, AUC = 0.795).

There are some limitations in the current study. Firstly, 
this was a retrospective study and patients were not ran-
domized, which may result in selection bias. Secondly, 

Fig. 3 The weight diagram of the final nine features used to build the radiomics model. The x-axis represents the weight or contribution of each feature 
that is associated with a p53 mutation. The larger the value, the greater its contribution to the model, and the value behind each blue column represents 
the weight value of this feature in the model
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Table 3 Independent predictors of p53 status by multivariate logistic regression analysis
Variable Univariate logistic regression Multivariate logistic regression

OR (95%CI) P-value OR (95%CI) P-value
Sex 0.361 (0.164,0.796) 0.011* 0.359 (0.166,0.776) 0.009*
CRM status 0.672 (0.248, 1.818) 0.434 NA NA
Mri-EMVI status 2.435 (0.846, 7.01) 0.099 NA NA
ACI status 0.669 (0.109, 4.099) 0.664 NA NA
Lymph Node 2.615 (1.114, 6.136) 0.027* 2.42 (1.143,5.121) 0.021*
Tumor stage 0.702 (0.293, 1.682) 0.427 NA NA
Age 1.005 (0.97, 1.041) 0.788 NA NA
CEA 1.000 (0.99, 1.011) 0.982 NA NA
Tumor size 0.976 (0.958, 0.995) 0.012* 0.978 (0.961,0.995) 0.012*
Dis 0.962 (0.871, 1.062) 0.442 NA NA
Radiomics model score 2.484 (1.104, 11.044) < 0.001* 1.566 (0.848,2.894) < 0.001*
Abbreviations: OR, odds ratio; CI, confidence interval; CRM, circumferential resection margin; EMVI, extramural vascular invasion; ACI, anal canal invasion; CEA, 
carcinoembryonic antigen; Dis, distance from the end of the convex edge of the tumor to the edge of the anus

Fig. 4 The diagnostic efficiency of the support-vector machine (SVM)-based radiomics signature for predicting p53 mutation status in the training cohort 
(A) and the validation cohort (B). The calibration curves of the joint model for predicting p53 mutation status in the training cohort (C) and the validation 
cohort (D), which demonstrated good agreement with the ideal curve
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p53 gene status was confirmed using immunohisto-
chemistry rather than genetic sequencing. However, as 
a conceptual study, this did not affect the final research 
outcome. Finally, the study data was collected from a sin-
gle center, and further multi-center studies are needed to 
validate the results.

Conclusions
In conclusion, radiomic features can be used to identify 
the p53 gene status in cancer, and the nomogram visu-
alization based on this model can serve as a conceptual 
design for screening high-risk populations with P53 
gene status in clinical practice. This may facilitate the 
pathological molecular diagnosis and risk stratification 
of locally advanced rectal cancer. In the future, we hope 

Fig. 5 Visual nomogram based on the integrated model (A). The diagnostic efficiency of the nomogram for predicting p53 mutation status in the training 
cohort (B) and the validation cohort (C)
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to further validate the model through multidimensional 
verification in order to expand the detection methods of 
P53 gene status.

Abbreviations
ROC  Receiver Operating Characteristic
EMVI  Extramural Venous Invasion
MRS  Magnetic Resonance Spectroscopy
CEA  Carcinoembryonic Antigen
TNM  Tumor Node Metastasis
CRM  Circumferential Resection Margin
VOI  Volume of Interest
CC  Correlation Coefficient
mRMR  minimum Redundancy Maximum Relevance
GBDT  Gradient Boosted Decision Tree
SVM  Support Vector Machine
AUC  Area under the Curve
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