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Abstract
Background Statistical atlases can provide population-based descriptions of healthy volunteers and/or patients and 
can be used for region- and voxel-based analysis. This work aims to develop whole-body diffusion atlases of healthy 
volunteers scanned at 1.5T and 3T. Further aims include evaluating the atlases by establishing whole-body Apparent 
Diffusion Coefficient (ADC) values of healthy tissues and including healthy tissue deviations in an automated tumour 
segmentation task.

Methods Multi-station whole-body Diffusion Weighted Imaging (DWI) and water-fat Magnetic Resonance Imaging 
(MRI) of healthy volunteers (n = 45) were acquired at 1.5T (n = 38) and/or 3T (n = 29), with test-retest imaging for five 
subjects per scanner. Using deformable image registration, whole-body MRI data was registered and composed 
into normal atlases. Healthy tissue ADCmean was manually measured for ten tissues, with test-retest percentage 
Repeatability Coefficient (%RC), and effect of age, sex and scanner assessed. Voxel-wise whole-body analyses using 
the normal atlases were studied with ADC correlation analyses and an automated tumour segmentation task. For 
the latter, lymphoma patient MRI scans (n = 40) with and without information about healthy tissue deviations were 
entered into a 3D U-Net architecture.

Results Sex- and Body Mass Index (BMI)-stratified whole-body high b-value DWI and ADC normal atlases were 
created at 1.5T and 3T. %RC of healthy tissue ADCmean varied depending on tissue assessed (4–48% at 1.5T, 6–70% 
at 3T). Scanner differences in ADCmean were visualised in Bland-Altman analyses of dually scanned subjects. Sex 
differences were measurable for liver, muscle and bone at 1.5T, and muscle at 3T. Volume of Interest (VOI)-based 
multiple linear regression, and voxel-based correlations in normal atlas space, showed that age and ADC were 
negatively associated for liver and bone at 1.5T, and positively associated with brain tissue at 1.5T and 3T. Adding 
voxel-wise information about healthy tissue deviations in an automated tumour segmentation task gave numerical 
improvements in the segmentation metrics Dice score, sensitivity and precision.

Conclusions Whole-body DWI and ADC normal atlases were created at 1.5T and 3T, and applied in whole-body 
voxel-wise analyses.
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Background
Diffusion-Weighted Imaging (DWI) can be used to study 
the movement of water molecules, governed mainly by 
tissue cellularity, cell membrane integrity and fluid vis-
cosity. It provides both visual and, by calculation of the 
Apparent Diffusion Coefficient (ADC), quantitative eval-
uations of tissue microcellular architecture. One usage 
area is in the diagnoses and longitudinal monitoring of 
cancer, with the ADC being a promising cancer imag-
ing biomarker shown to inversely correlate with tumour 
cellularity [1]. With the introduction of the Diffusion-
Weighted whole-body Imaging with Background body 
signal Suppression (DWIBS) technique, whole body 
tumour analysis has been made possible [2, 3]. High 
tumour to background contrast is obtained by using high 
diffusion sensitising gradient imaging, Short-TI Inversion 
Recovery (STIR) for fat suppression and a free breathing 
scan allowing for multiple signal averaging [4].

Statistical atlases have been constructed for a number 
of anatomical sites, providing population-based descrip-
tions from multiple healthy controls and/or patients into 
single 3D representations using image registration. This 
approach has most extensively been used in the brain, 
for which single- or multi-modal representations of the 
healthy and diseased brain have been thoroughly inves-
tigated [5]. Averaging imaging features across individuals 
have identified group-specific patterns of brain struc-
ture. This approach has also been assessed in other single 
organ sites such as the heart [6], lung [7] and prostate [8]. 
For whole-body imaging, the approach of population-
based atlases has been less studied. Medical image reg-
istration algorithms are in general purposely designed 
for specific body parts, with whole-body image registra-
tion being more challenging due to large inter-subject 
anatomical variations. Whole-body image registration 
algorithms have however been described [9–11] and a 
normal atlas for multi-modal 18F-Fluorodeoxyglucose 
(FDG) Positron Emission Tomography (PET)/Magnetic 
Resonance Imaging (MRI) suggested [12]. The advantage 
of a whole-body atlas framework includes the potential of 
studying systemic diseases such as metabolic syndrome 
and cancer [13], without reducing the analysis to a set of 
pre-defined Regions of Interest (ROIs). There is also the 
potential for voxel-wise comparisons between patient 
scans and normative data.

Studies of healthy tissue ADC have been highlighted as 
vital for establishing the precision of ADC measurements 
[14]. Healthy tissue ADC assessments from whole-body 
DWI have been reported [15, 16], but are scarce.

Whole-body DWI allows cancer monitoring across 
the whole body, and is commonly evaluated qualita-
tively from high b-value images and quantitatively from 
lesion-wise ADC measurements. Using this approach, 
early response assessment has been shown possible in 

e.g. lymphoma [17]. Moving beyond the standard lesion-
wise assessment of ADC, it has been suggested that 
other more advanced metrics can be used for improved 
tumour evaluation and response assessment. These 
include the total Diffusion Volume (tDV) for assessment 
of global disease burden [18] and histogram analysis of a 
single lesion or the total tumour burden for assessment 
of tumour spatial heterogeneity [19, 20]. For advanced 
measurements to be feasible, automated workflows for 
tumour segmentation are needed. Due to the high con-
trast between tumour and background, high b-value 
imaging is promising for this task. Blackledge et al. devel-
oped a semi-automated lesion segmentation approach 
using computed DWI (cDWI) [18]. To reduce image 
noise, this method was extended by Gatidis et al., who 
presented the voxel-wise cDWI (vcDWI) [21]. Informa-
tion about voxel ADC is utilised in the vcDWI calcula-
tion, giving an improvement in signal and contrast to 
noise ratio, and a reduction in T2 shine-through effects. 
For fully automated tumour segmentation, supervised 
Convolutional Neural Network (CNN) based methods 
have recently been developed, with the most widely used 
architecture being the U-Net [22]. It has successfully 
been used to segment tumours in many cancers, includ-
ing whole-body FDG PET applications. For DWI, U-Net 
has been used in single organ applications such as auto-
matic segmentation of ischemic brain injury [23] and 
brain tumours [24]. To the best of our knowledge, it has 
yet to be applied to whole-body DWI. Large initiatives 
for automated tumour quantification in whole-body DWI 
using machine learning have however been described in 
e.g. myeloma [25].

This work aims to create, evaluate and employ a nor-
mal atlas of whole-body DWI and ADC of healthy volun-
teers scanned at 1.5T and 3T. The atlas is created using 
deformable image registration and evaluated by estab-
lishing whole-body ADC values of healthy tissues, includ-
ing test-retest ADC measurements, comparison of ADC 
across field strengths and assessments of the effect of age 
and sex on ADC. We further employ the normal atlas in 
an automated tumour segmentation task, together with 
a deep learning approach, to investigate whether infor-
mation about healthy tissue deviations could be advanta-
geous in this task.

Methods
Subjects
In this prospective study, 45 healthy adult volunteers 
were recruited between January 2019 and February 
2020 (mean age 45.3 ± 14.0 years, range 25–77 years, 23 
females and 22 males). Ethics approval was obtained from 
the Uppsala regional ethics committee (Dnr 2017/524) 
and signed informed consent was obtained from all sub-
jects before participation. Basal data including age, sex, 
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height and weight were collected at time of imaging. The 
medical history of each subject was recorded, as well as 
any current medications. Exclusion criteria were con-
traindications to MR imaging (i.e. pacemaker, implanted 
devices, claustrophobia), contraindications to Busco-
pan administration, pregnancy and breast-feeding. Sub-
jects with metal implants and known disease affecting 
the normal appearance of imaging (e.g. tumour disease) 
were not included. All subjects were asked to participate 
in scanning on two scanners. Five subjects per scanner 
were imaged using a test-retest protocol, with imaging 
repeated after a short toilet break.

To evaluate the atlas in an automated tumour seg-
mentation task, a dataset of relapsed/refractory large 
B-cell lymphoma patients were included. This dataset 
contains 24 patients scanned longitudinally before and 
after therapy using Chimeric Antigen Receptor (CAR) 
T-cells. Patients scanned on PET/MRI and with measur-
able FDG-avid disease were included in the current study 
(n = 16, median age 63 years, range 37–71 years, 9 females 
and 7 males). A total of 40 PET/MRI scans were avail-
able, with each patient being scanned at 1–5 time points. 
Ethics approval was obtained from the Uppsala regional 
ethics committee (Dnr 2017/449) for retrospective data 
analysis.

Imaging
Imaging was performed with a 1.5T scanner (Achieva, 
Philips Healthcare, Best, The Netherlands, gradient 

system: 33 mT/m maximum amplitude, 180 T/m/s max-
imum slew rate) and a 3T scanner (Signa PET/MR, GE 
Healthcare, Milwaukee, WI, USA, gradient system: 44 
mT/m maximum amplitude, 200 T/m/s maximum slew 
rate). Station-wise scan parameters are shown in Table 1. 
Healthy volunteers were scanned at 1.5T and 3T, while 
lymphoma patients were scanned at 3T. Bowel prepa-
ration consisted of ≥ 4  h fasting and, to minimise peri-
staltic movements, an intramuscular injection of 20  mg 
Hyoscine Butylbromide (Buscopan). Head volume and 
phased array body coils were used for signal reception, 
with subjects in a head first supine position. Multi-station 
whole-body images were acquired axially in free breath-
ing using a water and fat MRI sequence and a diffusion-
weighted spin echo Echo Planar Imaging (EPI) sequence 
with STIR fat suppression. Scan coverage was head to 
mid-thighs, corresponding to five or six stations per sub-
ject. For healthy volunteers, an EPI sequence with reverse 
phase encoding was also acquired to enable DWI geo-
metric distortion correction using the Reverse Polarity 
Gradient (RPG) method [26, 27]. For lymphoma subjects, 
FDG PET imaging was included in the examination.

ADC maps were calculated station-wise from b = 50, 
400 and 900  s/mm2 images using a mono-exponential 
log-linear least square fit [28]. Water Fraction (WF) and 
Fat Fraction (FF) images were calculated from water 
and fat MRI [29]. Acquired stations were composed into 
single whole-body volumes by removing an equal num-
ber of overlapping slices from adjacent stations. Intensity 

Table 1 Station-wise MR image acquisition parameters at 1.5T and 3T
1.5T 3T

Sequence DWI T1w Dixon DWI T1w 
Dixon

Sequence details EPI, AP EPI, PA mDIXON EPI, AP EPI, PA LAVA-Flex
Respiration Free breathing mixed* Free breathing mixed*
Slices per station (n) 40 96 38 100
Overlapping slices (n) 3 8 5 23
Fat suppression STIR - STIR -
Parallel imaging factor 2.5 2 2 2
TR (ms) 5600 5.5 3500 4.1
TE (ms) 73 1.7/3.7 61.7 1.7
TI (ms) 180 - 245.9 -
Flip angle 90 15 90 12
FOV (mm) 440 × 361 400 × 400 440 × 352 500 × 450
Acquired matrix 128 × 103 200 × 200 128 × 96 256 × 212
Slice thickness (mm) 6 5 6 5
Bandwidth (Hz/pxl) 2719 587 1953 1302
b-values (s/mm2) 0, 50, 400, 900 0, 50 - 0, 50, 400, 900 0, 50, 900** -
NSA 2, 2, 4, 9 2, 2 1 2, 2, 4, 9 2, 2, 4 1
Acquisition time 4:29 min 0:50 min 19 s 3:09 min 1:35 min 16 s
The reverse phase encoding EPI sequence (EPI, PA) was acquired for healthy volunteers and not for lymphoma patients. *Breath-hold for neck, chest and abdomen 
stations, free breathing for head, pelvis and leg stations. ** b = 900 s/mm2 added to get an equal number of segments for the AP and PA acquisitions, enabling 
the same TR to be set. SS-EPI = single shot EPI, AP = anterior-posterior phase encoding, PA = posterior-anterior phase encoding, NSA = number of signal averages, 
bandwidth = receiver bandwidth.
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blending was not performed. An experienced radiologist 
(HA) screened all healthy imaging data for incidental 
findings.

Image registration
An image registration pipeline was setup to spatially align 
whole-body water and fat MR images (Fig.  1) using the 
open source deform package [30]. In deform, deformable 

Fig. 1 Image pre-processing (a) and registration pipeline (b), where iSAT mask corresponds to an inside SAT mask
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image registration is performed using a graph-cut based 
method, with a Gaussian smoothing multi-resolution 
strategy [9]. The registration algorithm utilises a patch-
based setup, in which overlapping subsets of the 3D 
volume is registered and the results then combined. 
Tissue-specific regularisation weights are used, applied 
according to voxel-wise FF and WF content. As previ-
ously described [10], it is beneficial to set a higher regu-
larisation for lean tissue (high WF) compared to adipose 
tissue (high FF), allowing for a larger inter-subject differ-
ence and higher elasticity of adipose tissue.

Subjects were stratified according to sex and body mass 
index (BMI). Two male and two female reference subjects 
were chosen, one corresponding to the healthy weight 
BMI range (BMI < 25  kg/m2) and one corresponding to 
the overweight BMI range (BMI ≥ 25 kg/m2). The remain-
ing healthy subjects’ water and fat MR images were reg-
istered to the relevant male or female reference spaces in 
a pre-processing and image registration pipeline as illus-
trated in Fig. 1.

In the pre-processing step, binary masks and a regulari-
sation weight map were generated. To separate the body 
from background, binary body masks were automatically 
created using thresholding and standard morphological 
operations. Arm removal was needed due to non-stan-
dard arm positioning. Due to the large Subcutaneous 
Adipose Tissue (SAT) variability in the cohort, binary 
inside SAT masks were created using an active learning 
2D U-Net [22]. After training, user input was needed to 
mark the start and end slice for the segmentation (arm-
pit and minor trochanter). Furthermore, binary dilated 
body masks were created in reference space. The dilated 
body mask defined the region within which the registra-
tion cost function was calculated, making the registration 
faster by background removal. By using a dilated body 
mask, body edge information was passed to the regis-
tration algorithm, giving improved registration results. 
Compared to previous implementations of the registra-
tion pipeline [10, 12], the current pipeline employed a 
direct image registration method with a regularisation 
weight map created from reference subject WF and FF 
images.

The registration was performed in two-steps; pre-regis-
tration, and water and fat MRI registration. The pre-reg-
istration step included deformable registration of body 
and inside SAT masks. This step gave a rough alignment 
of whole-body volumes, with the resulting deformation 
field used as a starting guess in the following step. For the 
main registration, input data included water and fat MRI, 
binary masks, the regularisation weights map and the 
pre-registration deformation field. Optimal registration 
parameters were evaluated by calculating the Dice score 
between fixed and registered moving body masks, num-
ber of discontinuities in the Jacobian determinant map 

and inverse consistency in terms of vector magnitude 
error, as well as visual image quality assessments.

Taking advantage of the inherent co-registration of 
simultaneously acquired water and fat MRI and DWI, 
whole-body DWI and ADC data were transferred to 
the relevant reference space using the final deformation 
fields.

Normal atlases
The registered healthy volunteer data were combined 
into male and female normal atlases of normal and over-
weight BMI. For the DWI and ADC images, normal atlas 
versions with and without geometric distortion correc-
tion were created. The distortion corrected images were 
calculated using an open source framework [26, 31], as 
previously described [27].

ADC evaluation
Whole-body ADC was assessed for healthy volunteers. 
ADC was measured by manual Volume of Interest (VOI) 
segmentations of ten healthy tissues in 3DSlicer [32]. Tis-
sues were selected as to span the whole body: parietal 
white matter, cerebellar white matter, liver (segment VI), 
spleen, kidneys, psoas muscle, vertebral body (L1-L5), 
pelvic bone (body of ilium), femur and thigh muscle. 
Multi-slice ROIs were manually placed in the tissue of 
interest by a medical physicist (TS), with three consec-
utive axial slices segmented for all tissues in male and 
female reference spaces, and with access to all imaging 
data. Circular ROIs were used, except for the spleen, kid-
neys and pelvic bone for which oval or crescent shaped 
ROIs were used. Right and left ROIs were used for white 
matter, kidneys, muscle, pelvic bone and femur, and then 
grouped. Additional File 1 shows representative slices 
of a reference subject at 3T with ROIs used to calculate 
ADCs for the ten different tissues. The segmentations 
were then transferred to each subject’s native space, 
visually assessed and, if needed, adjusted to exclude tis-
sue borders, major vessels and incidental findings. For 
each subject and each tissue segmented, the multi-slice 
ROIs were combined into VOIs. For each VOI the mean 
ADC (ADCmean), median ADC (ADCmedian) and size were 
extracted from non-distortion corrected data.

Voxel-wise correlation between ADC and age was per-
formed across the whole body in reference space. For this 
purpose, distortion corrected ADC data from all subjects 
were transformed to the BMI ≥ 25 kg/m2 male or female 
reference space, as applicable, using the registration pipe-
line illustrated in Fig. 1.

Tumour segmentation
For whole-body tumour segmentation, a state of the art 
3D U-Net [33] was setup with two different network 
architectures. The baseline architecture included two 
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input channels for DWI and WF data. For DWI data, it 
was assessed whether b = 900 s/mm2 or vcDWI data gave 
superior segmentation results according to the fore-
ground Dice score. The second architecture was setup 
with three input channels: DWI, WF and t-map data. 
DWI data was the best performing data from the base-
line model, while the t-map data included voxel-wise sta-
tistical deviations between normal atlas and lymphoma 
patient data (further described below).

WF data was prepared in range [0 1] and resam-
pled to DW image size using linear interpolation. For 
b = 900  s/mm2 data, the signal intensity of the head sta-
tion was normalised to the neck station signal inten-
sity using histogram matching of overlapping slices [34] 
prior to combining stations into whole-bodies. The sig-
nal intensity of each whole-body DWI dataset was nor-
malised using scaling to the upper quartile [35], followed 
by min-max normalisation to bring the data into range 
[0 1]. Max was set to the 99.99th percentile to avoid nor-
malising to image noise.

For t-map data, the male or female atlas components 
were registered to the native space of each lymphoma 
patient (registration pipeline, Fig. 1). Patient data, in the 
form of smoothed (Gaussian, σ = 1.7 mm) b = 900 s/mm2 
and vcDWI images, were then compared with the rele-
vant atlas component using a voxel-wise one-sided t-test. 
This resulted in whole-body maps of p-values and 
t-scores (t-maps) based on b = 900  s/mm2 and vcDWI 
data. To decide which dataset to include as a third chan-
nel in the U-Net model, a few hard-coded rules were 
used: (i) threshold on p < 0.001, (ii) morphological open-
ing to remove small detected clusters and (iii) removal of 
clusters with max signal intensity < 95th within-body per-
centile. To reduce false positives, it was further assessed 
whether removal of voxels belonging to adipose tissue 
(FF > 50%) gave improved results. The t-map of the data-
set achieving the best mean foreground Dice score was 
included as a third channel in the 3D U-Net setup. This 
t-map was mapped from [0 200] to [0 1]. To further high-
light tumour regions, it was also assessed whether mul-
tiplying the t-map with the corresponding normalised 
DWI data improved the segmentation performance. This 
t-map was mapped from [0 30] to [0 1].

Training was performed using five-fold cross-vali-
dation (4–9 scans per validation fold). 3D patches of 
size [x = 192, y = 192, z = 160] voxels were used for train-
ing, extracted using a sliding window with an overlap of 
0.25 between successive patches. The Dice loss function 
was used for training optimisation (excluding the back-
ground) [36] with Adam optimiser and a learning rate of 
1e− 4, a weight decay of 1e− 5 and a dropout factor of 0.20. 
Manual reference tumour segmentations were performed 
by two radiologists in consensus according to Lugano 

classification guidelines [37] and with access to water and 
fat MRI, DWI, ADC and FDG PET data.

The metrics extracted during five-fold cross validation 
were tDV, foreground Dice score, True Positive lesions 
(TP), False Positive lesions (FP), False Negative lesions 
(FN), sensitivity and precision. Lesion-wise sensitivity 
was defined as the number of correctly detected lesions 
(TP) divided by the total number of lesions (TP + FN), 
while lesion-wise precision was defined as the num-
ber of correctly detected lesions (TP) divided by the 
total number of detected lesions (TP + FP). Lesion-wise 
metrics were extracted from reference standard and 
predicted segmentations by connected components anal-
ysis, followed by thresholding on a cluster size of > 0.5 
ml. A predicted lesion was counted as a TP for a Dice 
score > 0.01%, when compared to the reference standard 
segmentation.

Statistical analysis
The normal atlases are presented as the voxel-wise mean 
and percentage Coefficient of Variation (CV) for all atlas 
components. For healthy tissue VOI-based ADC mea-
surements, summary statistics are presented in the form 
of mean, standard deviation (SD), median and interquar-
tile range (IQR). Healthy tissue ADC differences due to 
sex were assessed by independent samples t-tests, while 
ADC repeatability was assessed using the percentage 
repeatability coefficient (%RC) for test-retest exams [38]. 
The effect of scanner on ADC was assessed using Bland-
Altman statistics. Multiple linear regression was used to 
test if age and sex significantly predicted ADCmean for the 
VOI-based analysis, and Pearson correlation was used to 
assess the voxel-wise correlation between age and ADC 
for registered whole-body images in male and female ref-
erence spaces.

For the anomaly detection task, summary statistics are 
given as mean, SD, median and IQR.

Statistical significance was set at p < 0.05 and no correc-
tion for multiple comparisons was performed. Statistical 
analyses were performed using the open-source R soft-
ware (v3.6.1.) or Python NumPy library.

Results
Subjects
Subject demographics are shown in Table  2. Of 45 
recruited subject, 38 subjects were scanned at 1.5T 
(mean age 44.1 ± 15.0 years, 25–77 years, 17 females, 21 
males) and 29 subjects were scanned at 3T (mean age 
47.9 ± 15.0 years, 27–77 years, 13 females, 16 males). 
One recruited subject did not complete imaging due to 
claustrophobia. Current medications included blood 
pressure medication (n = 4), levothyroxine (n = 4), loper-
amide (n = 2), diabetes medication (n = 1), acetylsalicylic 
acid (n = 1) and mesalamine (n = 1). Test-retest scanning 
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was performed for five subjects per scanner, with the 
median time between the start of each scan being 57 min 
(range 56–68 min) at 1.5T and 74 min (range 65–98 min) 
at 3T. Twenty-three subjects were scanned at both field 
strengths, with a median time of 13 weeks (range 0–40 
weeks) between scans.

Normal atlases
Healthy subject water-fat MRI data were success-
fully registered to the relevant reference space. Rep-
resentative coronal images for the mean and CV of the 
BMI ≥ 25 kg/m2 male atlases at 1.5T and 3T are shown in 
Fig.  2, while Table  2 shows the number of subjects and 
characteristics for each atlas component. Movies of all 
atlas components are provided as Additional Files 2–5. 
Good registration results were in general obtained, with 
organ borders well defined. Notably, the signal to noise 
ratio of b = 900 s/mm2 images were reduced at 1.5T com-
pared to 3T, in particular seen for muscle tissue. An 
example of the effect of incorporating distortion correc-
tion in the atlas is shown in Fig. 3.

ADC evaluation
Summary statistics of ADCmean measured in tissues 
across the whole body are shown in Table 3, together with 
the segmented mean VOI size for each tissue, a compari-
son across sex and test-retest results in the form of %RC. 
Summary statistics for tissue ADCmedian are provided as 
Additional File 6. Overall, small numerical differences 
were measured between ADCmean and ADCmedian.

Sex differences were mainly measured at 1.5T, with sta-
tistically significant differences in ADCmean obtained for 
the liver (p = 0.045), psoas and thigh muscles (p < 0.001) 
and bones (femur p < 0.001, vertebral body p = 0.0047). 
At 3T, a significant sex difference in ADCmean was mea-
sured for thigh muscle only (p = 0.0042). The same effect 
of sex on ADC was seen in the multiple linear regression 
(Fig.  4). Age and/or sex predicted ADCmean for several 
healthy tissues, with Fig.  4 showing significant predic-
tions (predictions not reaching statistical significance are 
shown as Additional File 7). At 1.5T, age was negatively 
associated with ADCmean for the liver, vertebral body 
and femur. At both field strengths, a positive associa-
tion between age and ADCmean was obtained for parietal 
white matter.

The associations between age and ADC were con-
firmed in the voxel-wise whole body correlation analysis 
at 1.5T. As illustrated in Fig. 5 for female subjects, nega-
tive correlations between ADC and age were observed 
for e.g. liver, vertebral bodies and femur, and positive cor-
relations between ADC and age were observed for brain 
tissue. Voxel-wise correlations between FF and age, and 
volume and age, are also shown in Fig. 5. Further results 
of voxel-wise correlation between ADC and age for 

Fig. 2 Example atlas images for male BMI ≥ 25 kg/m2 healthy volunteers 
scanned at 1.5T (n = 11, top) and 3T (n = 9, bottom). For each atlas, coronal 
WF, b = 900 s/mm2 and ADC images are shown. The top row corresponds 
to mean images, while the bottom row corresponds to the percentage CV. 
Geometric distortion correction was not performed for diffusion images
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female and male subjects at 1.5T and 3T are provided as 
Additional File 8. For males at 1.5T, the voxel-wise cor-
relation between age and ADC showed the same trend 
as for females, but lower R-values were measured. At 3T, 
the positive correlation between ADC and brain tissue 
was visible in the voxel-wise analysis, but body regions 
had an overall noisy appearance.

Test-retest %RC varied depending on scanner used and 
tissue assessed (Table 3). Notably, a high repeatability was 
seen for the brain (%RC < 10% at 1.5T, %RC ≈ 10% at 3T). 
Muscle tissue had a high repeatability at 3T (psoas mus-
cle 7.3%, thigh muscle 5.9%), but was lower at 1.5T (psoas 
muscle 48.1%, thigh muscle 34.9%). Also evident from 
Table 3, was the large differences in ADCmean measured 

Table 2 Basic characteristics of the healthy subjects included in the atlas
1.5T

Male Female

All BMI < 25 BMI ≥ 25 All BMI < 25 BMI ≥ 25
n 21 10 11 17 8 9
Age (years) 44.1 (12.1) 43.7 (13.9) 43.7 (13.9) 44.1 (13.7) 41.9 (12.5) 46.0 (14.5)
Height (cm) 180.3 (5.2) 181.2 (5.3) 179.5 (5.0 167.4 (6.2) 166.1 (4.7) 168.6 (7.0)
Weight (kg) 84.6 (12.0) 75.0 (5.4) 93.3 (9.4) 69.8 (12.7) 59.6 (4.3) 78.9 (10.7)
BMI (kg/m2) 26.0 (3.8) 22.9 (1.7) 28.9 (2.8) 24.9 (3.9) 21.6 (1.7) 27.7 (3.0)

3T
Male Female
All BMI < 25 BMI ≥ 25 All BMI < 25 BMI ≥ 25

n 16 7 9 13 6 7
Age (years) 43.7 (12.0) 41.4 (13.0) 45.4 (10.8) 53.0 (16.7) 55.3 (15.8) 51.0 (17.1)
Height (cm) 180.9 (3.6) 183.9 (2.5) 178.7 (5.6) 166.9 (4.3) 165.7 (5.0) 168.0 (3.3)
Weight (kg) 84.1 (10.9) 76.9 (5.5) 89.7 (10.7) 69.5 (12.6) 58.2 (5.0) 79.1 (8.3)
BMI (kg/m2) 25.7 (3.6) 22.7 (1.7) 28.0 (2.8) 24.9 (4.0) 21.2 (1.1) 28.0 (2.7)
Data is presented as mean (SD).

Fig. 3 Example of the effect of distortion correction on the 3T atlas. Mean sagittal images for females with BMI < 25 kg/m2, showing non-corrected ADC 
(a) and distortion-corrected ADC (b) data. The effect of the distortion correction is mainly visible for the spinal column, with discontinuities seen for non-
corrected data as marked with an arrow. This is largely corrected for the distortion-corrected data
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Fig. 4 Multiple linear regression fit to tissue ADCmean, with age and sex as explanatory variables. Significant results (p < 0.05) are shown for 1.5T (a-f) and 
3T (g and h) data. For each tissue type, R2, model p-value, p-value for age, p-value for sex and regression equation are shown (female = 0, male = 1). Male 
and female measurement points are indicated in grey and black, respectively. Regression lines are shown with sex kept constant, with the grey lines cor-
responding to males and the black lines to females
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Table 3 ADCmean (×10− 3 mm2/s) measured in 10 tissues across the whole body at 1.5T (top) and 3T (bottom)
1.5T

ADCmean
all (n = 38)

VOI size
all (n = 38)

ADCmean
M (n = 21)

ADCmean
F (n = 17)

p-value M 
vs. F

%RC 
(n = 5)

Parietal WM 0.77 (0.037) 0.6 (0.2) 0.77 (0.040) 0.77 (0.033) 0.84 7.6
Cerebellar WM 0.67 (0.026) 1.3 (0.4) 0.67 (0.025) 0.67 (0.028) 0.75 4.3
Liver 0.60 (0.24) 8.6 (3.8) 0.53 (0.19) 0.69 (0.26) 0.045 48.1
Spleen 0.66 (0.15) 5.4 (2.0) 0.66 (0.14) 0.67 (0.16) 0.87 34.9
Kidney 1.91 (0.19) 7.6 (2.1) 1.88 (0.20) 1.94 (0.17) 0.35 15.0
Vertebral body 0.36 (0.12) 5.9 (1.3) 0.31 (0.10) 0.42 (0.12) 0.0047 38.7
Psoas muscle 0.77 (0.23) 4.0 (1.6) 0.63 (0.16) 0.93 (0.18) < 0.001 48.1
Pelvic bone 0.37 (0.10) 3.2 (0.8) 0.37 (0.093) 0.37 (0.11) 0.97 24.9
Femur 0.29 (0.11) 2.5 (0.7) 0.23 (0.060) 0.36 (0.11) < 0.001 45.0
Thigh muscle 0.88 (0.23) 5.5 (1.4) 0.77 (0.17) 1.02 (0.22) < 0.001 34.9
3T

ADCmean
all (n = 29)

VOI size
all (n = 29)

ADCmean
M (n = 16)

ADCmean
F (n = 13)

p-value M 
vs. F

%RC 
(n = 5)

Parietal WM 0.70 (0.074) 1.6 (0.5) 0.69 (0.077) 0.72 (0.067) 0.23 11.9
Cerebellar WM 0.71 (0.052) 1.4 (0.4) 0.72 (0.054) 0.71 (0.050) 0.63 9.8
Liver 1.24 (0.27) 11.6 (3.3) 1.19 (0.31) 1.30 (0.19) 0.31 17.6
Spleen 0.94 (0.25) 4.6 (1.9) 0.92 (0.25) 0.96 (0.26) 0.72 69.8
Kidney 2.03 (0.20) 7.7 (2.0) 2.04 (0.13) 2.02 (0.26) 0.78 21.2
Vertebral body 0.37 (0.11) 6.5 (1.6) 0.39 (0.11) 0.36 (0.11) 0.44 38.0
Psoas muscle 1.42 (0.067) 5.5 (2.0) 1.40 (0.072) 1.43 (0.057) 0.25 7.3
Pelvic bone 0.37 (0.075) 2.7 (0.7) 0.35 (0.080) 0.39 (0.059) 0.12 36.3
Femur 0.40 (0.076) 2.6 (1.0) 0.37 (0.048) 0.42 (0.095) 0.13 17.8
Thigh muscle 1.58 (0.093) 5.5 (1.5) 1.54 (0.080) 1.63 (0.079) 0.0042 5.9
For ADCmean and VOI size (ml), the mean is given with the SD in parentheses. P-values are shown for comparisons between male and female ADCmean values for each 
tissue type. Statistically significant comparisons are highlighted in bold (p < 0.05). The last column shows test-retest results for each tissue type in the form of %RC. 
M=male, F=female, WM=white matter.

Fig. 5 Whole-body R-maps showing voxel-wise correlation between ADC and age for female subjects at 1.5T. The coronal image shows the correlation 
between ADC and age across the whole body (a). Example axial slices show age correlated with ADC (b, c), FF (d, e) and volume (f, g) with significant 
R-values (p < 0.05) overlayed on the atlas mean water image. Distortion corrected ADC data was used to produce the plots
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at 1.5T and 3T. Bland-Altman plots including the 23 
dually scanned subjects confirmed this (Additional File 
9). Statistically significant differences between ADCmean 
measured at 1.5T and 3T were seen for all assessed tis-
sues except the kidneys, pelvic bone and vertebral bodies.

Tumour segmentation
Results from the tumour segmentation task are shown in 
Table  4; Fig.  6, with predicted segmentations shown in 
Additional File 10. For the baseline model with two input 
channels, superior segmentation results in terms of Dice 
score were obtained for b = 900 s/mm2 input data (mean/
median Dice = 38/40%, sensitivity/precision = 33/65%). 
For 12 scans (30%), all tumours were detected, with a 
median Dice score of 74% (range 23–90%) and median 
reference tDV of 39 ml (range 2-495 ml). For another 
12 scans (30%), no tumours were detected, with median 
reference tDV of 9 ml (range 2–34 ml). The tDV in these 
patients was in general composed of one or several 
small tumours. Inferior segmentation results were seen 
for vcDWI data in terms of Dice score (mean/median 

Dice = 36/30%). A higher number of TPs were however 
detected, giving increased sensitivity (36%).

The dataset obtaining the best results in the voxel-
wise segmentation approach using the normal atlas 
was vcDWI data, with FF voxels > 50% removed (mean 
Dice = 22%). Numerically, the three channel U-Net 
architecture performed better than the baseline U-Net 
architecture for all metrics assessed (Table  4, mean/
median Dice = 40/45%, sensitivity/precision = 42/69%) as 
achieved when using the t-map multiplied with vcDWI 
as input data. For this model, all tumours were detected 
for 13 scans (33%), with median Dice score of 72% (range 
1–92%) and median reference tDV of 33 ml (range 2-495 
ml). For 9 scans (23%), no tumours were detected, with 
median reference tDV of 9 ml (range 2–34 ml). As for the 
baseline model, the tDV in these patients was in general 
composed of one or several small tumours.

In general, predicted tDVs were smaller than manual 
reference tDVs (Fig.  6, left). The two U-Net architec-
tures detected the same number of TPs for 24 scans 
(60%), with an increase in the number of TPs seen for 15 
scans (38%) when using the U-Net with 3 input channels 
(Fig. 6, right). For both architectures, datasets with high 
b = 900  s/mm2 signal intensity in bone (n = 6, 15%) gave 
rise to approximately half of the false positives: n = 26 for 
2 input channels with b = 900 s/mm2 data, and n = 39 for 3 
input channels with t-map×vcDWI data.

Discussion
In this work, sex- and BMI-stratified whole-body DWI 
and ADC normal atlases were created at 1.5T and 3T. 
The atlases were used to study voxel-wise correlations 
between healthy tissue ADC and age across the whole 
body, confirming results from a manual segmentation 
approach. A deep learning based framework for auto-
mated tumour segmentation was setup. Statistical devia-
tions between lymphoma subject and normal atlas DW 
images were shown to numerically improve Dice score, 
sensitivity and precision of this task.

Table 4 Tumour segmentation results for the 3D U-Net with two 
and three input channels
Architecture 2 input channels 3 input channels
Input data WF, 

b = 900
WF, 
vcDWI

WF, 
b = 900, 
t-map

WF, 
b = 900, 
t-map × 
vcDWI

Dice, mean (SD) [%] 38.3 (32.5) 35.6 
(32.5)

39.4 (32.9) 40.4 
(32.4)

Dice, median (IQR) [%] 40.0 (74.0) 29.5 
(70.5)

43.8 (74.8) 44.6 
(69.0)

TP 104/2.6 114/2.9 122/3.1 135/3.4
FN 215/5.4 205/5.1 197/4.9 184/4.6
FP 55/1.4 71/1.8 59/1.5 62/1.6
Sensitivity [%] 32.6 35.7 38.2 42.3
Precision [%] 65.4 61.6 67.4 68.5
The TP, FN and FP are given as total number of tumours/tumours per scan.

Fig. 6 Manual reference and predicted tDV for all patients (left) and the change (Δ) in true positive lesions (TP) with ΔTP = TP(3 input channels)-TP(2 input 
channels) (right). Plots were produced for the b = 900 s/mm2 data for 2 input channels and the t-map×vcDWI data for 3 input channels
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The normal atlas was created using deformable image 
registration, building on a previously described method 
[9] and an open-source software [30]. Instead of per-
forming the image registration in a step-wise manner for 
bone, adipose and lean tissue, as previously implemented, 
it has been observed that a voxel-wise regularisation 
weight map, imposing constraints on the regularisation 
term, can be included in the registration. This gives an 
improvement in terms of substantially reducing the num-
ber of fold-over artefacts in the Jacobian determinant 
map and speeds up the registration. In this work, it was 
further noted that a high variability in BMI poses chal-
lenges for the whole-body registration. This problem was 
minimised by using an inside SAT binary mask. Distor-
tion corrected data was further utilised using the RPG 
method and was visually shown to improve the geometri-
cal accuracy of the healthy atlases. This has been studied 
in more detail by others [27, 39].

Measured healthy tissue ADCmean values of this study 
were in line with those previously reported and obtained 
from whole-body DWI at 1.5T [15] and 3T [16]. Varia-
tions in the selection and number of b-values acquired 
in different studies however make direct comparisons of 
ADC difficult. It was possible to perform voxel-wise cor-
relations between ADC and age across the whole body 
using the atlas. This was in particular evident at 1.5T for 
female subjects in bone regions and liver. This finding 
was confirmed by multiple linear regression analysis for 
manually segmented VOIs and are supported by previ-
ous studies for liver [16] and bone marrow [16, 40]. These 
results were however only seen at 1.5T, potentially due to 
the smaller number of subjects scanned at 3T. Sex differ-
ences in liver, bone and muscle were noted, with female 
subjects having higher ADCmean compared to men. These 
findings are also in line with published literature [16]. It 
has been suggested that ADC changes with age and sex 
in liver and bone marrow are due to changes in tissue 
fat content [16], with increased fat content seen for men 
compared to pre-menopausal women, and with increased 
age. This could however not be confirmed by the voxel-
wise analysis performed in this study, for which a correla-
tion between FF and age was not measurable.

A statistically significant association between ADC and 
age of parietal white matter was measured at both 1.5T 
and 3T. Although increased age has been shown to give 
increased water diffusion in white matter [41], the coarse 
image resolution in the current study made it difficult to 
measure white matter only without contamination from 
cerebrospinal fluid, which most likely affected the results.

Measurement precision is vital for longitudinal stud-
ies, to distinguish between measurement noise and true 
change in a biomarker of interest. ADC repeatability 
in localised areas of the body such as brain, prostate, 
breast and liver have been described in the Quantitative 

Imaging Biomarker Alliance (QIBA) diffusion imaging 
profile, but measurements of whole-body ADC repeat-
ability is lacking [38]. This study showed that ADCmean 
repeatability varied in the studied tissues, with the %RC 
ranging from < 10% for the brain to 48% at 1.5T (liver and 
psoas muscle) and 70% at 3T (spleen). As such, depend-
ing on the position in the body and tissue type, a large 
percentage change in ADCmean is potentially needed for a 
true change to be measurable. The measured repeatabil-
ity is however in the same range as figures reported in the 
literature. In the QIBA claim statement, %RC in the range 
11–47% are given depending on organ. Notably, the %RC 
of muscle was in this study smaller at 3T compared to 
1.5T (6–7% at 3T, 35–48% at 1.5T). This is possibly due to 
the improved signal to noise ratio offered at 3T. Evident 
from Fig. 2 and the b = 900 s/mm2 atlas image, the level of 
noise in muscle was larger at 1.5T compared to 3T.

Although the ADC has shown promise as an imaging 
biomarker, problems linked to its usage include proto-
col standardisation [14, 42]. Efforts have been made to 
standardise imaging protocols for obtaining reproducible 
biomarker measurements in DWI in general [38] and in 
whole-body scans [43]. Although this was a single-centre 
study, with acquisition protocols following current guide-
lines, evaluations of healthy tissues for subjects scanned 
at both 1.5T and 3T (n = 23) showed that large scanner 
differences in ADCmean exist for almost all studied tis-
sues. The between-scanner ADC reproducibility, another 
aspect of precision, was hence low. The time between 
repeated scans were however long for a subset of subjects 
(median time 13 weeks, range 0–40 weeks), which is not 
ideal for measurements of reproducibility. The results 
however still highlights that large between-scanner dif-
ferences can exist. A further aspect of standardisation is 
ADC measurement technique. In this work multiple-slice 
ROIs were used which has been shown to reduce ADC 
variability compared to using a single-slice ROI [44]. For 
reproducibility, the ROI placement used in this work is 
exemplified in Additional File 1.

An automated tumour segmentation framework was 
setup for whole-body DWI, in which information about 
statistical deviations from normality, in the form of 
t-maps, was shown to numerically improve the predic-
tion performance in terms of foreground Dice score, 
sensitivity and precision. When creating t-maps, vcDWI 
data gave the best mean Dice for the predicted segmen-
tations (22%). Usage of t-map data on its own, without 
a deep learning framework, was not feasible due to a 
large number of false positive voxels segmented by this 
approach. The false positives mainly stemmed from DWI 
signal artefacts, inter-subject signal intensity differences 
and registration errors. The U-Net was however able to 
use the t-maps to improve the Dice score and TPs of the 
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predicted segmentations, with only a small increase in 
FPs.

Overall, automated tumour segmentation for this 
cohort proved challenging with inferior segmentation 
results compared to published literature for FDG PET 
whole body cancer applications [45]. The lymphoma 
dataset utilised included a limited number of scans and 
many small tumours with near normal ADC. These 
tumours were hardly visible in the high b-value diffusion 
images used for automated tumour segmentation, mak-
ing this task very challenging. To a large extent, these 
small tumours were the reason for the U-Net not finding 
any tumours in a large proportion of scans (n = 12 for 2 
input channels, n = 9 for 3 input channels). In an ongo-
ing project, we have achieved a mean Dice of 36% for this 
cohort when FDG PET and WF data was used as input 
in the 2 input channels U-Net architecture. This can be 
compared to a mean Dice of 68% achieved for a larger 
dataset [46] using the same architecture (unpublished 
data). A further problem noted with usage of DWI data 
in general, was the increased signal intensity seen in the 
bone for a subset of patients, generating a large portion 
of the false positive tumours.

A general difficulty in MRI is that image signal intensi-
ties are arbitrary and do not have tissue-specific mean-
ing. Although quantitative information in the form of the 
ADC can be obtained, high b-value images are preferen-
tially used for tumour segmentation, and these are of a 
non-quantitative nature. This can potentially be problem-
atic for the implementation of common post-processing 
techniques, such as segmentation and quantitation [47]. 
DWI data suffers from both within- and between-subject 
signal intensity variations. In general, signal reception 
is performed with different coils for the head and body, 
giving large within-subject signal differences. Histogram 
matching of overlapping slices [34] largely resolved this 
issue in the current study. Between-subject signal inten-
sity variations for DWI data was to some extent rectified 
by upper quartile normalisation. Other normalisation 
methods were tested in this work, including min-max, 
Z-score and robust Z-score normalisation [35], but did 
not give improved segmentation results compared to 
upper quartile normalisation. There are however other 
signal intensity normalisation techniques that could be 
assessed, such as histogram-based methods [48].

Future work will include expanding the amount of 
training data and exploring synergistic effects of using 
multi-modal FDG PET and DWI data as input in the 
U-Net architecture. Between-scanner ADC and DWI 
signal intensity was in this study however shown to be 
large, and age and sex differences exist for a subset of 
organs. For multi-centre large-scale deep learning stud-
ies, often needed to provide sufficient training data, 
these factors might prove problematic. Improvements in 

normalisation techniques, and potentially age- and sex-
matched studies, might be needed.

This study includes limitations. The number of subjects 
included was small, affecting the results of this paper, e.g. 
ADC repeatability measurements and the U-Net based 
tumour segmentation task. Due to scheduling issues 
and healthy subject availability, a long time interval was 
obtained between scans at 1.5T and 3T for a subset of the 
subjects, potentially affecting the ADC scanner compari-
son negatively. The tumour reference segmentations were 
based on access to FDG PET, DWI and water-fat data. It 
is possible that the U-Net would have performed better 
if reference segmentations had been performed on DWI 
and water-fat data only. Lastly, distortion corrected data 
for lymphoma patients was not available. This would have 
been preferable as the geometric distortion of DWI and 
ADC data can give large discrepancies between diffusion 
and structural imaging data. In future studies it might 
be clinically feasible to include distortion correction in 
a whole-body scanning protocol, as faster sequences for 
e.g. RPG distortion correction are becoming available 
[39].

Conclusion
Sex- and BMI-stratified whole-body DWI and ADC 
atlases were created at 1.5T and 3T. ADC repeatability 
varied depending on scanner and tissue assessed and 
healthy tissue ADC assessments showed large scanner 
differences, potentially posing challenges for multi-centre 
data pooling and analysis automation. The atlases were 
used to study voxel-wise correlations between healthy 
tissue ADC and age across the whole body, confirming 
results from a manual segmentation approach. Lastly, a 
framework for using the normal atlas in an automated 
tumour segmentation task was presented, with improved 
segmentation results in terms of Dice score, sensitivity 
and precision.
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