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Abstract
Background  Extranodal extension (ENE) in head and neck squamous cell carcinoma (HNSCC) correlates to poor 
prognoses and influences treatment strategies. Deep learning may yield promising performance of predicting ENE 
in HNSCC but lack of transparency and interpretability. This work proposes an evolutionary learning method, called 
EL-ENE, to establish a more interpretable ENE prediction model for aiding clinical diagnosis.

Methods  There were 364 HNSCC patients who underwent neck lymph node (LN) dissection with pre-operative 
contrast-enhanced computerized tomography images. All the 778 LNs were divided into training and test sets with 
the ratio 8:2. EL-ENE uses an inheritable bi-objective combinatorial genetic algorithm for optimal feature selection 
and parameter setting of support vector machine. The diagnostic performances of the ENE prediction model and 
radiologists were compared using independent test datasets.

Results  The EL-ENE model achieved the test accuracy of 80.00%, sensitivity of 81.13%, and specificity of 79.44% 
for ENE detection. The three radiologists achieved the mean diagnostic accuracy of 70.4%, sensitivity of 75.6%, and 
specificity of 67.9%. The features of gray-level texture and 3D morphology of LNs played essential roles in predicting 
ENE.

Conclusions  The EL-ENE method provided an accurate, comprehensible, and robust model to predict ENE in HNSCC 
with interpretable radiomic features for expanding clinical knowledge. The proposed transparent prediction models 
are more trustworthy and may increase their acceptance in daily clinical practice.

Keywords  Head and neck squamous cell carcinoma, Extranodal extension, Radiomics, Evolutionary learning, Artificial 
intelligence
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Introduction
Extranodal extension (ENE) is a pathological diagnosis 
defined by the College of American Pathologists lip and 
oral cavity cancer protocol as “extension of metastatic 
tumor, present within the confines of the lymph node 
(LN), through the LN capsule into the surrounding con-
nective tissue, with or without associated stromal reac-
tion” [1]. ENE is a poor prognostic factor associated with 
increased locoregional failure, distant metastases, and 
reduced overall survival in patients with head and neck 
squamous cell carcinoma (HNSCC) [2–4].

The presence of ENE is critical in clinical decision-
making. For patients with ENE-positive HNSCC, con-
current chemoradiotherapy may yield similar treatment 
outcomes to patients receiving surgery followed by adju-
vant chemoradiation, while providing fewer treatment-
related acute and late toxicities, and lower healthcare 
costs [5–8]. Therefore, developing an accurate, robust, 
and trustworthy prediction model to distinguish the ENE 
status before the definitive treatment is important to 
guide the best therapy for HNSCC patients.

Contrast-enhanced computed tomography (CT) scan is 
the most widely used method to predict ENE status for 
HNSCC patients in clinical practice. However, the litera-
ture revealed that this method has limited diagnostic per-
formance, with reported sensitivity ranging from 43.7 to 
69% and the area under the receiver operating character-
istic curve (AUC) ranging from 0.6 to 0.69 [9–13]. Fur-
thermore, high inter-observer variability is also reported 
[9, 11–13].

To improve the diagnostic performance of ENE by CT 
scanning, two studies applied deep learning methods 
to establish prediction models for ENE detection [14, 
15]. Both studies showed excellent results with AUC of 
0.91 and 0.82 for ENE prediction. Although deep learn-
ing models yield attractive results, these models often 
work as black-boxes with limited transparency and inter-
pretability [16]. It is difficult for clinicians to correlate 
the results of these deep learning models with known 
radiomic features of ENE.

Identification of effective radiomic features plays a vital 
role in advancing prediction performance and providing 
interpretability associated with clinical knowledge. Lee 
et al. proposed an evolutionary learning (EL) method for 
establishing clinical-radiomic models to predict the early 
recurrence of hepatocellular carcinoma after resection, 
better than other well-known machine learning (ML) 
derived models [17]. This EL method aims to optimize 
the feature selection and model parameters in establish-
ing ML models.

In this work, we use the novel EL approach to identi-
fying a set of interpretable radiomic features. The pro-
posed method EL-ENE uses the inheritable bi-objective 
combinatorial genetic algorithm (IBCGA) [18] with an 

intelligent evolutionary algorithm (IEA) [19] for optimal 
feature selection and parameter setting of support vector 
machine (SVM) to establish an interpretable model for 
predicting ENE by CT scanning.

Materials and methods
Patient selection, image acquisition, and characteristics
The medical records of consecutive patients with histo-
logically proven HNSCC from 1 to 2009 to 31 October 
2017 were reviewed retrospectively. Three hundred and 
sixty-four HNSCC patients who underwent neck LN dis-
section with preoperative contrast-enhanced diagnostic 
head and neck CT scans were enrolled. Exclusion crite-
ria included previous neck surgery, preoperative chemo-
therapy/chemoradiotherapy, LN short axis < 1 cm on CT 
images, and the time between staging CT to LN dissec-
tion over 6 weeks. The Institutional Review Board of our 
institution approved this study (201801181B0/201801181
B0C501/201801181B0C601).

The head and neck CT scans were performed on a 
64-channel scanner (Aquilion 64, Toshiba Medical Sys-
tems, Tokyo, Japan), 80-channel scanner (Aquilion Prime, 
Canon Medical Systems, Otawara, Japan) or 256-channel 
scanner (Siemens Healthcare AG, Erlangen, Germany) 
with the following parameters: tube current 100–550 
mAs; voltage 120 kVp; gantry rotation time 0.5  s; pitch 
0.969  mm/rotation; detector collimation 80 × 0.5  mm; 
field of view 22  cm; and 3  mm axial reconstruction 
thickness. The CT images extend from the upper orbital 
rim through the upper thorax. Enhanced images were 
obtained 60  s after intravenous injection of 1.0 mL/kg 
CT contrast (Omnipaque 350, GE Healthcare, Princeton, 
New Jersey) at a rate of 2.0 mL/second. The CT scans 
were reviewed on a commercial Picture Archiving and 
Communication System (PACS) workstation. (Centricity 
RA 1000; GE Healthcare, Chicago, IL, USA).

All pathology specimens were collected and reviewed 
by one head and neck pathologist (J. Lan) to avoid 
interobserver variation. ENE was defined as tumor 
infiltrating from the capsule of a metastatic LN [1]. For 
each LN, a one-to-one matching between the pre-oper-
ative CT images and the pathology report was obtained 
according to the LN’s laterality, anatomical level, and 
nodal size. If there were more than one LN with a simi-
lar size at the same region on the CT image where a defi-
nite correlation could not be derived, these LNs were not 
included in the study. The regions of interest (ROIs) were 
delineated manually at the edge of LNs on each slice in 
the axial plane and were recorded in the RT structure set 
(RTSS) label file. The segmentation process was done by 
one radiation oncologist (T.T. Huang) to ensure contour-
ing consistency.

The CT images used included 364 patients with 778 3D 
LN images. The dataset contained 375 normal LNs, 139 
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metastasis LNs, and 264 ENE LNs. The CT image for-
mat was Digital Imaging and Communications in Medi-
cine (DICOM), and the size was 512*512 pixels. Among 
them, 22 patients had synchronous head and neck can-
cers with 391 primary sites. The most common primary 
disease site was the oral cavity. Only 2.2% of patients in 
the cohort had positive p16 status. The detailed patient 
characteristics are listed in Table 1.

The 778 3D LN images were divided into a training set 
and a test set by the approximate ratio 8:2. The training 
set had 618 LNs of 314 patients, including 296 negative 
LNs, 111 metastasis LNs, and 211 ENE LNs. The test set 
had 160 LNs of 50 patients, including 79 negative LNs, 28 
metastasis LNs, and 53 ENE LNs.

The proposed method EL-ENE
The proposed method EL-ENE used an evolutionary 
learning approach to identifying a small set of radiomics 
features while maximizing the prediction accuracy. Fig-
ure  1 shows the flowchart of EL-ENE, including image 
pre-processing, feature extraction, feature selection, and 
ensemble classifier of SVM [20].

Image pre-processing
The image pre-processing for extracting ROIs includes 
three main tasks, including (1) extraction of the vol-
ume of Interest (VOIs), (2) superimposition of CT 
image and RTSS annotation, and (3) extraction of ROIs 
from the DICOM images. First, the new Window Cen-
ter was adjusted using Window Center, Rescale Slope, 
and Rescale Intercept in the DICOM file header. Then, 
the VOI was calculated using the new Window Center 
and Window Width, and was normalized into the range 
of [0, 255]. The coordinate information of the ROI was 
recorded in the RTSS annotation file. The normalized CT 
image was superimposed with the ROI coordinate, and 
the desired ROI contour position map in the DICOM file 
was obtained.

The boundary information of LNs is highly associated 
with the ENE. To ensure that the contours detected were 
complete, we extracted the accurate ROI using morpho-
logical operations, including dilation, fill, and erosion. 
Finally, the designed mask using the morphological oper-
ations was operated on the calibrated CT images, and the 
tomographic images of the LN sections were extracted. 
The Imdilate, imfill, and imerode functions in the Matlab 
tool were used to extract the ROI boundary. In addition, 

Table 1  Demographics (364 patients; 391 primary sites; 778 LNs)
Characteristic Value
Age
     Mean 54.4 ± 10.8
Gender
     Male 333 (91.5%)
     Female 31 (8.5%)
Primary cancer site
     Oral cavity 289 (73.9%)
     Oropharynx 47 (12.0%)
     Hypopharynx 36 (9.2%)
     Larynx 17 (4.4%)
     Salivary glands 2 (0.5%)
Pathological T stage
     T1 80 (20.5%)
     T2 106 (27.1%)
     T3 35 (9.0%)
     T4 162 (41.4%)
     Biopsy only 8 (2.0%)
Pathological N stage
     N0 134 (36.8%)
     N1 62 (17.0%)
     N2 164 (45.1%)
     N3 4 (1.1%)
p16 status
     Positive 8 (2.2%)
     Negative 337 (92.6%)
     Unknown 19 (5.2%)
LN status
     Negative 375 (48.2%)
     Metastatic with ENE(-) 139 (17.9%)
     Metastatic with ENE(+) 264 (33.9%)

Fig. 1  The flowchart of EL-ENE including image pre-processing, feature 
extraction, feature selection, and ensemble classifier of support vector 
machine
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we also extracted the ROI inscribed square and the ROI 
contour information for subsequent image analysis, e.g., 
feature extraction from the gray level change inside and 
outside the ROIboundary.

Feature extraction
We extracted gray level, geometric, morphological, and 
texture features from CT images of LNs as candidate fea-
tures. There were 460 candidate features, which were cat-
egorized into six types of features with 26 feature subsets 
(Table 2). The six types were Gray-Level Co-occurrence 
Matrix (GLCM), Gray-Level Size Zone Matrix (GLSZM), 
Gray-Level, LN morphology, LN boundary, and Invariant 
moment.

The GLCM, GLSZM, and Invariant moment features 
were extracted from the largest inscribed square of 
the largest ROI section in the LN. The GLCM features 
reflect the texture distribution by counting the gray level 
changes between the two pixels at the space in various 
angles and distances. GLCM features contain four types 
of gray quantitative features [21] and 14 types of Haralick 
features [22], including Cluster Shade, Cluster Proxim-
ity, Contrast, Correlation, Different Entropy, Different 
Variance, Dissimilarity, Energy, Entropy, Homogeneity 

Normalized, Homogeneity, InfoCorrelation1, InfoCor-
relation2, Max Probability, Sum Average, Sum Entropy, 
Sum of variance, and Variance. Each feature type con-
tains 20 features calculated from 20 GLCMs with differ-
ent angles and distances. The parameter range of GLCM 
was set to 16 grey levels, the directions were 0 ̊, 45 ̊, 90, 
and 135 ̊, and the distances were integers from 1 to 5.

GLSZM calculated the change of gray levels in ROI by 
quantizing the gray area in the image [23]. Unlike GLCM, 
GLSZM calculated a matrix for the domains connected 
in all directions for the same gray levels, regardless of 
rotation and distance. The parameter of GLSZM for the 
gray level range was set to 16 levels, and 11 features can 
be obtained, including small area emphasis, large area 
emphasis, low intensity emphasis, high intensity empha-
sis, low intensity small area emphasis, low intensity large 
area emphasis, high intensity small area emphasis, high 
intensity large area emphasis, intensity variance, size 
zone variance, and zone%. Invariant moments are often 
used as optical character recognition and shape recog-
nition features in images. Their moment invariance was 
not changed by the rotation, translation, and scaling of 
images [24, 25]. Through the second-order and third-
order central moments, seven invariant moments were 
obtained as features.

Gray-Level and 2D LN morphology features were 
extracted from the largest ROI section in the LN. For the 
gray level features of ROI, they show the statistical analy-
sis of the numerical changes of the gray levels in the ROI, 
including ten features such as Mean, Median, Variance, 
Standard deviation, Maximal of gray levels, Minimal of 
gray levels, Skewness, Kurtosis, Energy, and Entropy. The 
2D morphological features are the surface configuration 
of image objects, which are essential in distinguishing 
LNs. 24 features were collected, including Area, Perim-
eter, Major Axis Length, Minor Axis Length, Orientation, 
Convexity, Convex Area, Convex Perimeter, Maximum 
radius, Bounding Box Area, Defects Ratio, Perimeter 
Area Ratio, Aspect Ratio, Bending Energy, Eccentric-
ity, Equivalent Diameter, Solidity, Extent, Compactness, 
Rectangularity, Elongation, Roundness, Ellipiticty, and 
Sphericity.

3D LN morphology features were extracted from 
the 3D LN model. First, a series of LN CT images were 
stacked. Then, the height of the stacked 3D LN model 
was corrected by using the actual width of the pixel (e.g., 
0.4680 mm) and slice thickness (e.g., 3 mm) recorded in 
DICOM head file. Finally, Delaunay triangulation was 
used to smooth the surface of interpolated LNs (using 
the interp3 function of Matlab). Twenty-nine features 
were collected, including Volume, Surface, Equivalent 
diameter, Extent, three Principal Axis Length, three Ori-
entation, Eccentricity, Solidity, Convex volume, Con-
vex surface, Convexity, Compactness, Rectangularity, 

Table 2  The 26 subsets belonging to six feature types
Feature type Subset of features Number 

of features
1 Gray-Level Co-

occurrence Matrix
Cluster Shade 20
Cluster Proximity 20
Contrast 20
Correlation 20
Different Entropy 20
Different Variance 20
Dissimilarity 20
Energy 20
Entropy 20
Homogeneity Normalized 20
Homogeneity 20
InfoCorrelation1 20
InfoCorrelation2 20
Max Probability 20
Sum Average 20
Sum Entropy 20
Sum of variance 20
Variance 20

2 Gray-Level Size 
Zone Matrix

GLSZM 11

3 Gray-Level Gray level 11
4 LN morphology 3D Morphology 29

2D Morphology 24
5 LN boundary Edge 3 6

Edge 5 6
Edge 10 6

6 Invariant moment Invariant moment 7



Page 5 of 11Huang et al. Cancer Imaging           (2023) 23:84 

Elongation, Roundness, Area volume ratio, three Aspect 
radius, Maximum radius, Bounding box volume, Ellipi-
ticty, Defect ratio, Gaussian Curvature sum, and Mean 
Curvature sum.

The LN boundary was extracted from the ROI section 
in the LN. For boundary features, the gray level changes 
inside and outside the ROI area are related to whether 
the LNs expand outside the LNs. The Imdilate function 
of Matlab was used to extract the ROI boundary area, 
which is dilated with disc-shaped structural elements, 
considering the radius of the disc shape with 3, 5, and 10 
pixels. For each ROI boundary area on CT images, 6 LN 
boundary features were extracted, including Mean inside 
the ROI, Mean outside the ROI, Standard variance inside 
the ROI, Standard variance outside the ROI, differences 
of Mean, and Standard variance between inside and out-
side the ROI.

Feature selection
Due to the large number of candidate features, EL-ENE 
used a coarse-to-fine feature selection. The coarse step 
is to independently evaluate each of the 26 feature sub-
sets using the classification accuracy of SVM in terms of 
10-fold cross-validation (10-CV). For each feature subset, 
three SVM models were established to evaluate feature 
subsets. The three models predicted a LN as (1) normal 
or metastatic, (2) ENE or non-ENE, and (3) normal, met-
astatic, or ENE. For each model, we selected the top five 
feature subsets ranked by prediction accuracy. Experi-
mental results revealed seven feature subsets with 89 fea-
tures, including Sum of variance, GLSZM, Gray-Level, 
3D Morphology, Edge 3, Edge 5, and Edge 10.

The fine step used an IBCGA [18, 19] cooperated with 
SVM to select a minimal number of features while maxi-
mizing prediction accuracy. IBCGA selects m form n 
(= 89 in this study) features and determines the parameter 
setting of SVM for training the prediction models. Since 
IBCGA is a non-deterministic algorithm, the obtained 
SVM models with identified features were not always the 
same. EL-ENE establishes an ensemble SVM classifier 
consisting of 31 SVM models with different sets of fea-
tures that predicts LNs as normal, metastasis, or ENE.

The customized IBCGA
EL-ENE uses an evolutionary learning approach to opti-
mizing the system parameters in designing an interpre-
table classifier. The customized IBCGA algorithm was 
used to select a small number m from a large number n of 
radiomics features and determine two parameter values 
of the SVM model, cost C and γ of the kernel function.

The simultaneous optimization of feature selection and 
SVM parameters play a vital role in modeling. The m fea-
tures can be ranked according to the prediction contribu-
tion using the main effect difference. Some applications 

of IEA and IBCGA in designing prediction models for 
biomedicine research can refer the studies [26–29].

In EL-ENE, the fitness function of IBCGA is to maxi-
mize the prediction accuracy of 10-CV on the training 
dataset. The best value of m was automatically deter-
mined belonging to the range [rend, rstart]. The parameter 
settings of IBCGA were as follows: Npop=50, Ps = 1.0, Pc = 
0.8, Pm = 0.05, Gmax = 100, rstart =70, and rend=5. The main 
steps of IBCGA are as follows.

Step 1.	Initialization: Generate a population of Npop 
individuals randomly where each contains r = rstart 
selected features, (n-rstart) unselected features, C and 
γ. G = 0.

Step 2.	Evaluation: Evaluate all individuals using the 
fitness function.

Step 3.	Selection: Select Ps×Npop individuals by a 
tournament selection method to form a mating pool.

Step 4.	Crossover: Perform the orthogonal array 
crossover of IEA [19] on randomly selected Pc×Npop 
individuals.

Step 5.	Mutation: Randomly select Pm×Npop individuals 
excluding the best one to mutate using a bit-swap 
operation.

Step 6.	Termination test: Increase the number G by 
one. If G = Gmax, output the best individual in the 
population as Xr, G = 0, and go to Step 7. Otherwise, 
go to Step 2.

Step 7.	Inheritance: If r > rend, randomly mutate a binary 
gene from 1 to 0 for each individual, decrease the 
value of r by 1, and go to Step 2.

Step 8.	Output: Let Xm with m selected features be the 
best individual among Xr where r = rend, rend+1, …, 
rstart.

Radiologists’ review protocol
Three neuroradiologists with more than 4 years of expe-
rience in head and neck imaging were recruited for 
assessing the status of ENE. LNs in the test data sets were 
annotated with serial numbers for review. Five radiomic 
features were applied for judging ENE presence, includ-
ing irregular nodal enhancement, poorly defined nodal 
margins, infiltration of the adjacent fat plane, central 
necrosis, and matted nodes.

According to the 5 imaging features, the observers con-
cluded the probability of ENE based on a 5-point rating 
score: 1, definitely not ENE; 2, likely not ENE; 3, equivo-
cal ENE; 4, likely ENE and 5, definitely ENE. Scores 1 and 
2 were deemed negative ENE while scores 3–5 were con-
sidered positive ENE [9, 11].

Model evaluation and statistical analysis
The diagnostic performance of the prediction model was 
evaluated on the independent test data set using AUC, 
sensitivity, specificity, accuracy, positive and negative 
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predictive values. The statistics were performed by R ver-
sion 4.02 (The R Foundation for Statistical Computing, 
Vienna, Austria) and SPSS version 22.0 software (SPSS, 
Chicago, IL).

Results
Subset feature evaluation
Three types of prediction ability were tested for select-
ing the promising subset features as candidate ones for 
the feature selection of IBGGA. Table A1 listed the top 
five subset features with high 10-CV accuracy, which can 
distinguish the metastatic LNs. The top five subset fea-
tures were Gray-level, Edge 10, Sum of variance, 3D mor-
phology, and Edge 5. Table A2 listed the top five subset 
features which can distinguish the ENE LNs. The top five 
subset features were 3D morphology, Gray-level, Edge 5, 
GLSZM, and Edge 10. Table A3 listed the top five subset 
features which can distinguish three classes of LNs. The 
top five subset features were 3D morphology, Gray-level, 
Edge 3, Sum of variance, and Edge 10.

The 3D morphology, Gray-level, and Edge 10 were 
selected in three types of evaluations. The Sum of vari-
ance and Edge 5 were selected in two of them, and Edge 
3 and GLSZM were selected once. The results show that 
morphology, gray level, and edge features were important 
in distinguishing the LN types. The seven subsets with 
89 features were selected as the input feature for the EL-
ENE method.

Feature selection results
A set of features were selected from a total of 89 features 
through IBCGA. Then, the ensemble classifier with 31 
stable models with different feature combinations was 

established, and the final model predicted the answer of 
the LN types by voting on 31 models. In the 31 models, 
Gray-Level features were the most frequently selected 
subset features, followed by Edge features, Sum of vari-
ance, and 3D morphology features. Among them, 3D 
morphology features were mainly suitable for distin-
guishing ENE LNs.

Each of the 31 models had a satisfactory prediction 
ability. From the analysis of the subset features of the 
31 models, the features that were selected more than 16 
times represent that they had a significant influence on 
the voting process and were the most influential. The 
top-rank features in the best combination feature set 
were shown in Table 3. The GLSZM subset feature con-
tained Low intensity small area emphasis, Zone%, High 
intensity large area emphasis, and small area empha-
sis. Among them, small area emphasis had the smallest 
p-value, 3.454e-09.

Four Grey-level subset features were selected, includ-
ing Median, Max Pixel Value, Variance, and Energy, 
where Variance had the smallest p-value, 1.821e-18. 
The normal LNs had the most significant value of Vari-
ance, and ENE LNs had the smallest value of Variance. In 
addition, the same results were found in the analysis of 
D1A45 (distance 1, direction 45 degrees) in Sum of vari-
ance of GLCM.

The difference between the small area emphasis, Vari-
ance, and Sum of variance D1A45 was that the small area 
emphasis focused on the grey level change related to the 
size of the area changed, the Variance focused on the grey 
level change of the entire image, and the Sum of variance 
D1A45 focused on the grey level change in specific dis-
tances and angles.

Six 3D morphology subset features were selected, 
including Orientation2, Orientation3, Solidity, Max 
radius, Area, and compactness. Solidity had the smallest 
p-value, 7.182e-42. Solidity represented the irregularity 
of the surface. The boxplot of the small area emphasis, 
Variance, Sum of variance D1A45, and Solidity in three 
types of LNs were shown in Fig. 2.

Figure 3 showed the inscribed squares in ROI and 3D 
models of the three types of LNs, including normal LNs 
(no. 152), metastatic LNs (no. 246), and ENE LNs (no. 
61). Although it was difficult to distinguish the difference 
in texture with the human eye [30], the analysis revealed 
valuable information that normal LNs have the largest 
values of the small area emphasis, Variance and Sum of 
variance D1A45. For the 3D features, normal LNs had the 
smallest value of Solidity, and ENE LNs had the most sig-
nificant value of Solidity.

Prediction performance of EL-ENE model and radiologists
The EL-ENE method established 31 independent pre-
diction models. All the results were counted, the voting 

Table 3  The selection times of features in the ensemble classifier 
consisting of 31 SVMs
Subset feature Feature name Times of 

selection
GLSZM Low intensity small area 

emphasis
31

3D morphology Orientation2 30
GLSZM Zone% 29
GLSZM High intensity large area 

emphasis
29

Grey level Median 28
Grey level Max Pixel Value 28
3D morphology Orientation3 27
Grey level Variance 26
GLSZM small area emphasis 24
3D morphology Solidity 21
3D morphology Max radius 19
3D morphology Area 18
Grey level Energy 17
Sum of variance D1A45 16
3D morphology Compactness 16
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method was adopted, and the final answer was decided 
by a majority. The EL-ENE ensemble model was trained 
by 618 LNs and independently tested by 160 LNs.

The EL-ENE ensemble model achieved test accuracy 
of ENE prediction 80.00%, sensitivity 81.13%, specific-
ity 79.44%, PPV 66.15%, NPV 90.32%, and AUC: 82.51%. 
For metastasis prediction, the prediction model achieved 
accuracy 77.50%, sensitivity 70.37%, specificity 84.81%, 
PPV 82.61%, NPV 73.63%, and AUC 83.41%. (Table  4; 
Fig. 4)

The radiologists’ prediction performance for ENE pre-
diction achieved test accuracy 70.44%, sensitivity 75.64%, 
specificity 67.91%, PPV 50.04%, NPV 85.43%, and AUC 
71.78%. For metastasis prediction, the prediction per-
formance was as follows: accuracy 73.79%, sensitivity 
76.54%, specificity 70.94%, PPV 74.53%, NPV 74.67%, 
and AUC 71.87%. The EL-ENE model performs signifi-
cantly better prediction performance than two of the 
radiologists (p-value = 0.0006 and 0.002), and no statis-
tically significant difference with the third radiologist 
(p-value = 0.654). (Table 4)

Discussion
We have proposed an evolutionary learning method for 
establishing a transparent and interpretable ensemble 
classifier to predict metastatic and ENE LNs in HNSCC 
patients. This model shows superior classification abil-
ity to the radiologists while providing exquisite inter-
pretable information to physicians. Many selected 
radiomics features can find reasonable clinical or patho-
logical relevance. For example, small area emphasis, the 
most popular feature selected in the classification model, 
may represent the invasion of tumor cells and necrotic 
changes in a metastatic or ENE LN [31]. A larger small 
area emphasis value means a finer texture in the small 
area. In our data, normal LNs possess the largest value 
of small area emphasis. As the pathological changes of 
cancer cell invasion and necrosis development progress, 
this value decreased in the metastatic LNs and became 
the smallest value in the ENE LNs. Our study also finds 
that the 3D morphology features, which are rarely men-
tioned in published literature, are powerful for detecting 
ENE LNs. These implicit and subtle features may provide 
further clinical insights for ENE image evaluation in the 
future. The results revealed that an interpretable model 
can not only provide excellent prediction ability but also 
correlate the association between the radiomics features 
and novel clinical knowledge.

Interpretability is critical for clinical prediction models. 
Understanding the correlation between the input data, 
the prediction results, and the principles of decision-
making behind the EL algorithms may gain the trust and 
confidence of the prediction models to the clinical practi-
tioners [32] because clinical decision-making is based on 
logical reasoning, rigorous inference, and solid evidence 
[33–35]. Due to the lack of interpretability, clinicians may 
be more conservative in applying black-box algorithms 
to support clinical decision-making, especially in the 
high-stake clinical scenarios [36]. It is also challenging 
to detect or even be aware of potential model errors or 
biases in an opaque prediction model [37]. Furthermore, 
an interpretable prediction model might discover com-
prehensible novel information for future clinical practice 
[38]. That is to say, clinicians may learn new knowledge 

Fig. 3  The regions of interest inscribed squares and 3D models of normal 
lymph nodes (no. 152), metastatic lymph nodes (no. 246), and ENE lymph 
nodes (no. 61)

 

Fig. 2  The boxplots of (a) Small area emphasis, (b) Variance, (c) Sum of 
variance D1A45, and (d) Solidity in the normal, metastatic, and extranodal 
extension lymph nodes
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from the interpretable models by analyzing their “think-
ing process”. Consequently, interpretable EL-based medi-
cal applications are more trustworthy, robust, creative, 
and more feasible for clinical practice.

Deep learning has been heavily applied to medical 
image research for constructing appealing high-accuracy 
diagnostic and prediction models in individual studies 
in recent years [39–45]. In ENE detection, Kann and his 
colleagues developed the first deep learning 3D convolu-
tional neural network model with impressive diagnostic 
performance and comprehensive external validation [15, 
46, 47]. Both this deep learning model and our EL-ENE 
model outperformed most radiologists in ENE detec-
tion. Their AUCs are numerically higher than our model, 
although we cannot directly compare results from differ-
ent data sets. Deep learning algorithms such as convolu-
tional neural networks can automatically and adaptively 
learn complex imaging features and establish sophisti-
cated models [48]. Therefore, with sufficient data, these 
models might catch essential features beyond the pre-
defined radiomic features and potentially achieve better 
prediction outcomes.

However, the widespread adoption of deep learning 
models into daily clinical practice is yet to be established 
[49]. One major reason for this disproportionate phe-
nomenon is that the data-driven nature of deep learning 
models is often referred to as black-box algorithms [40]. 
Therefore, most early deep learning applications have 

the inherent shortcomings of intransparency and unin-
terpretability. These model defects may erode the phy-
sicians’ confidence in deep learning models and further 
restrict the wide acceptance of these models into clinical 
practice. Recently, there has been increasing research on 
interpretable deep learning models to mitigate the opac-
ity and uninterpretability of deep learning models [50, 
51]. Various methods have been developed for building 
more interpretable deep learning models with promising 
results [51]. With the rapid progress of interpretable ML, 
a more comprehensive deep learning algorithm might 
create more trustworthy prediction models and increase 
the adoption of its applications into clinical practice in 
the future.

The diagnostic and prediction power of ML models is 
not always unlimited. In our case, the physical limitations 
of the diagnostic CT images may restrict its accuracy 
for recognizing metastatic or ENE LNs. For example, 
the z-axis resolution in standard diagnostic helical CT 
images with 2–3 mm slice thickness may not be sufficient 
to identify subtle micro ENE [52]. Moreover, uncertain-
ties from CT homogeneity, Hounsfield number accuracy, 
image linearity, noise interference, and artifact may fur-
ther hamper the diagnostic ability of CT images [53]. 
Therefore, if a ML model provides exaggerated results 
beyond our expectations, we should carefully examine 
that model for potential errors or biases. Undoubtedly, an 

Table 4  The prediction performance of the EL-ENE model and radiologists
EL-ENE model Radiologists

ENE Prediction Metastatic Prediction ENE Prediction Metastatic Prediction

Training Set Test Set Training Set Test Set Test Set Test Set
Accuracy 82.52% 80.00% 78.96% 77.50% 70.44% 73.79%
Sensitivity 79.15% 81.13% 66.77% 70.37% 75.64% 76.54%
Specificity 84.27% 79.44% 92.23% 84.81% 67.91% 70.94%
PPV 72.81% 66.15% 89.92% 82.61% 50.04% 74.53%
NPV 88.46% 90.32% 71.58% 73.63% 85.43% 74.67%

Fig. 4  The receiver operating characteristic curve of extranodal extension prediction and nodal metastasis prediction models on an independent test set
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interpretable ML model is also more applicable for this 
purpose.

This study has several limitations. First, all images were 
collected in a single institution. The generalizability of 
this model should be further validated. Second, some 
LN data were discarded during data collection because 
a definite correlation between CT images and pathol-
ogy reports could not be established. Finally, the CT slice 
thickness is 2–3 mm which may limit the special resolu-
tion. Some subtle image features might be blurred due to 
this relatively thick CT slice thickness.

Future research is warranted to overcome the above 
limitations. First, external validation is essential for eval-
uating model generalizability and the robustness and 
consistency of selected radiomics features. This process 
could further strengthen the reliability of this explain-
able EL-ENE model and increase confidence in applying 
this model in clinical practice. Second, modern medi-
cal imaging, such as high-resolution CT or magnetic 
resonance imaging, might further improve the model’s 
performance. These advanced medical images possess 
more clinical information and better resolution for dis-
criminating subtle image features such as micro ENE. 
With a similar model build-up process, we can build an 
enhanced EL-ENE model with these modern medical 
images with potentially better performance.

Conclusions
In addition to the pursuit of accurate ENE prediction 
models, a transparent ML algorithm may provide more 
comprehensible and robust models for medical applica-
tions. Furthermore, these models may explore novel fea-
tures to expand our clinical knowledge. We believe that 
more clinicians will be pleased to adopt these trustwor-
thy applications into their daily practice in the future.
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