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Abstract 

Background The aim of this work is to evaluate the performance of radiomics predictions for a range of molecular, 
genomic and clinical targets in patients with clear cell renal cell carcinoma (ccRCC) and demonstrate the impact 
of novel feature selection strategies and sub‑segmentations on model interpretability.

Methods Contrast‑enhanced CT scans from the first 101 patients recruited to the TRACERx Renal Cancer study 
(NCT03226886) were used to derive radiomics classification models to predict 20 molecular, histopathology and clini‑
cal target variables. Manual 3D segmentation was used in conjunction with automatic sub‑segmentation to generate 
radiomics features from the core, rim, high and low enhancing sub‑regions, and the whole tumour. Comparisons were 
made between two classification model pipelines: a Conventional pipeline reflecting common radiomics practice, 
and a Proposed pipeline including two novel feature selection steps designed to improve model interpretability. 
For both pipelines nested cross‑validation was used to estimate prediction performance and tune model hyper‑
parameters, and permutation testing was used to evaluate the statistical significance of the estimated performance 
measures. Further model robustness assessments were conducted by evaluating model variability across the cross‑
validation folds.

Results Classification performance was significant (p < 0.05,  H0:AUROC = 0.5) for 11 of 20 targets using either pipeline 
and for these targets the AUROCs were within ± 0.05 for the two pipelines, except for one target where the Proposed 
pipeline performance increased by > 0.1. Five of these targets (necrosis on histology, presence of renal vein invasion, 
overall histological stage, linear evolutionary subtype and loss of 9p21.3 somatic alteration marker) had AUROC > 0.8. 
Models derived using the Proposed pipeline contained fewer feature groups than the Conventional pipeline, leading 
to more straightforward model interpretations without loss of performance. Sub‑segmentations lead to improved 
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performance and/or improved interpretability when predicting the presence of sarcomatoid differentiation 
and tumour stage.

Conclusions Use of the Proposed pipeline, which includes the novel feature selection methods, leads to more inter‑
pretable models without compromising prediction performance.

Trial registration NCT03226886 (TRACERx Renal)

Keywords Radiomics, Radiogenomics, Histology, Interpretable, Machine learning, Feature selection, Group selection, 
Renal cancer, Nested validation, Molecular subtyping

Background
TRACERx Renal (NCT03226886) [1–3] is an ongoing 
prospective multi-omics study exploring the genomic 
and molecular drivers of clear-cell renal cell carcinoma 
(ccRCC) with a target accrual of 320 patients. The interim 
results of the first 101 patients provided novel insights 
into cancer evolution and identified novel prognostic 
genetic features [3]. Specifically, patient outcome could 
be independently predicted from weighted genomic 
instability index (wGII, a measure of chromosomal com-
plexity), and genetic intratumoural heterogeneity (ITH, 
a reflection of diversity of the genetic landscape of the 
tumour cells). Directly translating such biomarkers into 
the clinic is currently not possible since they necessitate 
cost-prohibitive genomic profiling, the tissue specimens 
are often compromised by pauci-cellularity, and rou-
tine tissue-fixation causes sequencing artefacts. A more 
intractable problem is that multiple tumour samples are 
required to accurately capture ITH, which is only pos-
sible from post-surgical resection of the tumour. Thus, 
these biomarkers cannot currently be applied clinically 
for treatment planning or determining surveillance regi-
mens in patients who do not have surgery. Moreover, for 
patients who do have surgery, pre-surgical determination 
of the status of these biomarkers, and of histopathology 
markers currently evaluated post-surgery (such as the 
presence of necrosis and of sarcomatoid changes), would 
be of use in surgical and treatment planning.

Radiomic analysis of pre-surgical contrast-enhanced 
CT (CE-CT) scans presents an opportunity to non-
invasively identify imaging features that can predict 
prognostic genomic and histopathological metrics, 
potentially enabling clinical translation of molecular 
markers via radiological scans. Here we leverage TRAC-
ERx Renal to develop accurate radiomic predictors of 
an array of clinically relevant genomic and histopatho-
logical metrics in ccRCC and propose a novel group fea-
ture selection method that facilitates radiomic signature 
interpretability.

There is growing consensus in the radiomics com-
munity that whilst obtaining properly validated meas-
ures of radiomics model performance is essential, it is 
also necessary to develop a meaningful interpretation of 

the predictive model [4–6], and this is true of machine 
learning (ML) applications beyond radiomics. In a recent 
review [7], Tomaszewski and Gilles argue that interpret-
ing radiomics signatures in relation to underlying bio-
logical processes will be the catalyst for generating robust 
findings that can impact clinical practice. TRACERx 
Renal is therefore an ideal study for advancing the field 
of interpretation in radiomics because the novel molecu-
lar metrics of interest have themselves been developed to 
better understand the underlying biology. In particular, 
these metrics are influenced by intra-tumour spatial het-
erogeneity, and whilst this is a natural property of radi-
omic features, molecular metrics are more commonly 
derived from a single sampling site.

Feature selection methods are known to improve 
machine learning model performance and while many 
studies have assessed the impact of different feature 
selection methods in the context of radiomic studies 
[6, 8–10], their effect on radiomic signature interpret-
ability remains unexplored. Radiomics pipelines typically 
include multiple stages of feature selection that remove 
features based on properties such as their reproducibil-
ity, high correlations with other features, and their rel-
evance when predicting the target of interest [5, 6, 11]. 
However, standard implementations of these techniques 
are a priori unbiassed with respect to each feature, mean-
ing that the presence (or absence) of a meaningful inter-
pretation for each feature does not influence the selection 
procedure.

Determining the interpretability of radiomics fea-
tures is somewhat subjective, but features derived from 
the tumour shape (such as tumour volume and surface 
area) can be easily understood by a lay person, whereas 
features derived from pixel grey level distributions (such 
as mean value or entropy) require some specialist knowl-
edge, and features relating to image texture features are 
not well understood, even by image processing experts.

We hypothesise that using selection procedures that 
do not account for individual feature interpretability may 
lead to the discovery of radiomics signatures that are 
harder to interpret, and so we have developed a novel fea-
ture selection strategy designed to nudge the ML pipeline 
towards discovering more interpretable signatures. Such 
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a biased selection procedure could theoretically compro-
mise model performance, so we compare the prediction 
performance of models built using different feature selec-
tion strategies.

To improve the interpretability of the final signature 
we employed three approaches: (1) extending the cor-
relation-based feature reduction approach by retaining 
features with simpler over more complex interpretations; 
(2) a related supervised feature group selection step that 
treats the inclusion or exclusion of feature groups from 
the model as a tuning parameter that can be optimised 
using cross-validation; (3) use of tumour sub-segmen-
tations to generate augmented radiomic feature sets to 
relate features in the radiomics signature back to their 
corresponding sub-segmented regions.

This study aims to:

1. Evaluate the performance of CE-CT radiomics pre-
dictions of a range of novel prognostic genetic fea-
tures and clinical targets in the TRACERx Renal 
cohort (101 patients), and determine which tar-
gets warrant further study in the final cohort (320 
patients).

2. Compare the interpretability of radiomics signatures 
obtained in these data using standard feature selec-

tion methods and the proposed feature selection 
methods.

3. Evaluate the impact of tumour sub-segmentation on 
radiomics signature interpretability.

Methods
Patient cohort
The subjects included in this study are the first 101 con-
secutive patients recruited to an ongoing prospective 
study (NCT03226886, TRACERx renal: study started 
February 2012, estimated completion September 2023, 
estimated enrolment 320 patients). Ethical approval was 
granted for this cohort study by the National Health 
Service Research Ethics Committee (11/LO/1996, UK). 
Details of patient selection and inclusion/exclusion cri-
teria are outlined in the supplementary information 
section S1, and 91 lesions were finally available for radi-
omics analysis, see Fig. 1.

Molecular and histopathological targets
Table  1 lists 20 classification targets and the number of 
patients falling into each class for that target. The first 
six targets in Table 1 are obtained from histopathological 
examination of the surgical specimen and are currently 

Fig. 1 Flow diagram showing patient inclusion and exclusion process
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used in standard of care clinical practice to prognosti-
cate patients after surgery. Overall pathological stage was 
binarized by grouping into stages 1 or 2 (tumours con-
fined within kidney) vs stages 3 or 4 (tumours not con-
fined within kidney). The 14 molecular targets in Table 1 
were derived by multi-regional sampling and next gen-
eration sequencing (NGS) of the surgical specimen and 
include somatic mutations in ccRCC driver genes or 
somatic copy number alterations (SCNAs), ITH and 
wGII, and the evolutionary mode of the primary tumour: 
“linear”, “branched” and “punctuated” evolutionary sub-
type (EvoST), described in [2, 3]. Further details are in 
the supplementary information, section S2. Somatic 
alterations were described as either clonal (present in all 
regions in the tumour), subclonal (present in a subset) or 
absent. Prediction of the three EvoSTs was performed as 
a one vs all classification.

Image preparation and feature extraction
Pre-surgical CE-CT scans were obtained during the 
nephrographic contrast phase from four different scan-
ner vendors using a range of standard of care imaging 
protocols detailed in supplementary information Table 
S1. Scan data were saved in DICOM format prior to 
being pseudonymised and transferred to a research PACS 

based on the eXtensible Neuroimaging Archive Toolkit 
(XNAT) platform [12], which served as the principle 
repository for image curation and analysis.

Image volumes were resampled using bilinear interpo-
lation to give 1 × 1 × 5mm voxels, after which multi-slice 
segmentations were drawn by a clinical fellow (SS) to 
cover the whole tumour and checked/corrected by a con-
sultant radiologist with 7 years’ experience (DAD). Two 
different image sub-segmentation methods were explored: 
sub-segmentation into visually apparent high and low 
enhancing sub-regions, and erosion of the tumour masks 
by 10mm to generate core and rim masks, see Fig. 2 and 
supplementary information section S3. This core/rim 
sub-segmentation matches the spatial analysis approach 
previously applied to the histopathology data from these 
patients [2, 3], where it was discovered that more aggres-
sive clones tended to be detected in the outer 10 mm of 
the tumour sections. As shown in Fig.  2a, the rim and 
core regions have a bias towards high enhancement and 
low enhancement respectively, so a more direct sub-seg-
mentation into visually apparent high- and low-enhancing 
regions may generate radiomic signatures that are easier 
to interpret. An algorithm for automatically sub-segment-
ing into high- and low-enhancing regions was developed, 
see supplementary information section S4. Three ROI sets 

Table 1 List of classification targets and abbreviations, and the proportion in the positive class. Targets with a indicate continuous 
variables that were binarized by thresholding on the median cohort value – note that the % positive is expected to be 50%, but the 
presence of repeated values in these targets means this is not exact. Overall stage was binarized as stage 1 or 2 vs stage 3 or 4. The 
eleven targets in bold font have their predictive models explored in detail in the Results section and Discussion

Target type Target # negative # positive % positive

Histopathology Necrosis 41 50 55

Sarcomatoid changes 82 9 10

Microvascular invasion 53 38 42

Renal vein invasion 47 44 48

Inferior vena cava invasion 76 15 16

Overall Stage 12 vs 34 60 31 34

Evolutionary subtype Branched 68 23 25

Linear 82 9 10

Punctuated 66 25 27

ITH and chromosome complexity ITH Indexa 49 42 46

wGII Maxa 45 46 51

wGII  Mediana 44 47 52

Somatic events Loss 9p21.3 36 55 60

Loss 9p21.3 isClonal 73 18 20

Loss 14q31.1 32 59 65

Loss 14q31.1 isClonal 68 23 25

BAP1 72 19 21

BAP1 isClonal 80 11 12

PBRM1 41 50 55

PBRM1 isClonal 54 37 41
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were therefore evaluated by generating radiomics features 
from each sub-segmentation: 1) whole tumour, 2) whole 
tumour plus high- and low-enhancing sub-regions, 3) 
whole tumour plus core and rim sub-regions.

One hundred five radiomics features were computed 
in compliance with IBSI guidelines using pyradiomics 
v3.0.1 [13, 14], and included 14 shape, 18 first-order and 
73 texture features (2D). See supplementary informa-
tion section S5 for details of extraction parameters and 
the specific features computed within these three feature 
groups.

Feature selection methods
Feature reproducibility
Ten randomly selected patients were independently seg-
mented by a second radiologist (JS) and the intra-class 
correlation coefficient (ICC) was used to reject non-
reproducible features with ICC < 0.75. From the 105 
computed features, this resulted in the following feature 
counts for each ROI set: whole tumour = 73, low-enhanc-
ing = 48, high-enhancing = 56, tumour core = 72, tumour 
rim = 58.

Unsupervised correlation‑based feature reduction
Two correlation-based feature reduction (CFR) methods 
were evaluated. They both work by iteratively discarding 
one feature from the most correlated pair of features, but 
they differ in how they choose which feature to discard 
during each iteration.

Firstly, the standard CFR method computes the mean 
absolute correlation between both features and the other 
remaining features, and the feature with the highest mean 
correlation is removed. An example of this algorithm is 

implemented by the function findCorrelation from the 
caret toolbox in R and is widely used in radiomics studies.

A limitation of this approach is that ignoring infor-
mation on feature interpretability could result in a 
radiomics model that includes features that are harder 
to interpret. We therefore propose a hierarchical CFR 
approach, where a hierarchy of feature groups is pre-
specified based on an overall judgment of the inter-
pretability of the features within each group. On 
comparison of two highly correlated features the fea-
ture in the lower-ranking group will be discarded. When 
two features are in the same feature group, the standard 
CFR rule is applied to determine which feature to dis-
card. The following hierarchy is used here: MeshVol-
ume > shape > first-order > texture. Therefore, if a shape 
feature is highly correlated with a first-order or texture 
feature, the shape feature is always retained, or if a first-
order feature is highly correlated with a texture fea-
ture then the first-order feature will be retained. Since 
tumour volume (i.e. MeshVolume) has a straightforward 
interpretation and is often informative, it is placed in its 
own group and will always be retained.

Supervised feature group selection
Echoing the hierarchical CFR concept, an additional fea-
ture selection step is proposed that restricts the features 
used for model building to a set of pre-defined feature 
groups:

1. MeshVolume
2. shape features (including MeshVolume)
3. first-order features
4. texture features

Fig. 2 Example tumour sub‑segmentations and histograms: a rim/core and b high/low enhancing sub‑regions. Curves overlayed onto histograms 
are kernel density smoothed estimates from the corresponding sub‑regions, and images are shown for the central four of 21 slices
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and this set is augmented with all pair-wise combina-
tions of groups 2–4 plus a final group that includes all 
features, giving eight feature groups in total. The CFR 
and feature group selection steps are applied prior, and 
in addition to any other feature selection steps that may 
be part of the classification model fitting, e.g., the clas-
sifier used in this work includes LASSO regularization 
that employs embedded feature selection [15]. To avoid 
under- or over-fitting, selection of the feature group is 
treated as a tuning parameter of the overall pipeline and 
is determined using cross-validation (CV), see Fig. 3.

Classification pipeline and performance evaluation
The feature group selection step can be used in combina-
tion with any classification model, but as a proof-of-con-
cept, Logistic regression (LR) with LASSO regularisation 
was used here since the non-zero LR model coefficients 
can be used directly for model interpretation (they are 
equivalent to variable importance estimates [16, 17] that 
require additional post-processing steps for many other 
classification models, such as SVM and RF). As required 
by the LR-LASSO model, radiomics features were stand-
ardized using z-scores prior to model fitting.

Two pipelines were evaluated: Conventional, using 
standard CFR with LR-LASSO and no feature group 
selection, and Proposed, using hierarchical CFR with 
feature group selection and LR-LASSO. In each case 
parameter tuning of the feature group selection and/
or the LASSO regularisation coefficient was performed 
using a grid search with 3-fold CV, nested inside an 
outer 5-fold CV (repeated 100 times with different 
random seeds) for performance evaluation, see Fig.  3 
and supplementary information section S6. The area 
under the receiver operating curve (AUROC) was 
used as a performance metric (averaged across the CV 
splits), and permutation testing of the entire nested CV 

procedure was used to compute a p-value on the null 
hypothesis: AUROC = 0.5 [18]. A further model fit was 
applied to the whole data set for each target (i.e., dis-
pensing with the outer CV but including the inner tun-
ing CV) in order to generate a single model to be used 
for model interpretation, and this is referred to as the 
‘final model’.

The ML pipelines and validation routines were 
implemented using the Python sklearn toolbox, and 
both CFR algorithms and the group feature selection 
step were implemented by extending the sklearn.base.
BaseEstimator class.

Model interpretation
For the Proposed pipeline, the selected feature group 
can be used to guide model interpretation, whereas 
for the Conventional pipeline further post-processing 
of the features with non-zero LR coefficients is needed 
to determine which feature groups are present in the 
final model (see Table 2). This was applied to the final 
models for each target and pipeline and to each of the 
500 models obtained from the outer CV splits. The fre-
quency that each feature group was selected across the 
500 CV splits was determined to indicate uncertainty 
and model robustness.

Experimental evaluations
Classifiers for all 20 targets were built using the model 
and validation procedures outlined above for both 
pipelines and for all three ROI sets. Classification 
performance was evaluated using the AUROC and 
permutation p-values, and model interpretation was 
performed as outlined above.

Fig. 3 Flow diagram showing the model discovery pipeline within nested cross‑validation loops (CV) to perform parameter tuning 
and performance evaluation
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Results
Model performance assessment
Figure  4 shows violin plots of the distribution of 
AUROCs obtained under repeated CV for 11 of the 
20 targets. These targets of interest had permutation 
p-values that were significant (p < 0.05) for at least one 
ROI set, see Table 2. (For completeness, Table S3 (sup-
plementary information) gives summary performance 

metrics for 9 targets that had non-significant p-values 
(p > 0.05).) Figure 4 shows that despite differences in the 
feature selection methodologies of the two pipelines, the 
AUROC performance is within ± 0.05, which is smaller 
than the variation in AUROC across the CV splits. An 
exception is for Linear EvoST, where the Proposed 
pipeline performance is notably higher. Thus, our new 
methodology does not compromise performance, and 

Table 2 Classification results for 11 targets of interest that have p < 0.05 for one or more ROI sets. For both pipelines the cross‑
validated AUROC and permutation p‑values are shown. The Feature group column for the Conventional pipeline details which 
feature groups are present in the features from the fit to the whole data set. The Feature group column with the Proposed pipeline 
is the feature group that was selected in the group selection step of the pipeline. The number of features in the final model for each 
case are shown, and the row in bold for each target is the sub‑segmentation that has the highest AUROC for the Proposed pipeline. 
EvoST  = Evolutionary subtype

Target ROI set Conventional pipeline Proposed pipeline

AUROC p-value Feature group # features AUROC p-value Feature group # features

Necrosis whole 0.841 < 0.01 all 9 0.817 < 0.01 all 9

whole/high/low 0.827 < 0.01 all 11 0.815 < 0.01 shape 7

whole/rim/core 0.856 < 0.01 all 11 0.834 < 0.01 all 10
Sarcomatoid change whole 0.654 0.17 all 9 0.642 0.13 shape|firstorder 4

whole/high/low 0.757 0.044 all 8 0.764 0.026 shape 7
whole/rim/core 0.694 0.077 all 7 0.692 0.076 shape|firstorder 2

Microvascular invasion whole 0.813 < 0.01 all 7 0.783 0.010 all 7
whole/high/low 0.791 < 0.01 all 10 0.750 0.011 all 11

whole/rim/core 0.812 < 0.01 all 8 0.774 0.010 all 11

Renal vein invasion whole 0.862 < 0.01 all 8 0.862 < 0.01 shape 3
whole/high/low 0.845 < 0.01 all 7 0.841 < 0.01 shape 8

whole/rim/core 0.848 < 0.01 all 10 0.852 < 0.01 shape 3

Inferior vena cava invasion whole 0.705 0.035 all 5 0.680 0.048 shape 2
whole/high/low 0.691 0.033 all 8 0.658 0.064 shape 4

whole/rim/core 0.730 0.040 all 7 0.672 0.092 shape 3

Overall stage 12 vs 34 whole 0.915 < 0.01 all 9 0.901 < 0.01 all 10
whole/high/low 0.890 < 0.01 all 15 0.893 < 0.01 shape 7

whole/rim/core 0.904 < 0.01 all 12 0.892 < 0.01 all 12

Branched EvoST whole 0.720 0.014 all 11 0.736 0.012 firstorder 2
whole/high/low 0.706 0.032 all 10 0.698 0.032 texture 10

whole/rim/core 0.701 0.044 all 7 0.699 0.035 firstorder 4

Linear EvoST whole 0.655 0.14 all 8 0.809 0.030 MeshVolume 1

whole/high/low 0.673 0.19 all 3 0.822 0.031 MeshVolume 1
whole/rim/core 0.632 0.19 all 5 0.814 0.015 MeshVolume 1

ITH Index whole 0.734 0.012 all 6 0.745 0.013 shape 2
whole/high/low 0.755 0.022 all 14 0.728 0.015 all 13

whole/rim/core 0.729 0.015 all 8 0.730 0.014 shape|firstorder 4

wGII Max whole 0.718 0.012 all 3 0.737 0.015 shape 2
whole/high/low 0.696 0.018 all 3 0.704 0.019 shape 5

whole/rim/core 0.677 0.019 all 3 0.721 0.014 shape 2

Loss 9p21.3 whole 0.793 < 0.01 all 5 0.814 < 0.01 shape 2
whole/high/low 0.779 < 0.01 all 9 0.788 < 0.01 shape 5

whole/rim/core 0.764 0.010 all 7 0.787 0.011 shape 2
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in the following sections we demonstrate its impact on 
interpretability.

Feature group selection
The Feature group columns in Table  2 show that the 
Conventional pipeline resulted in final models con-
taining at least one feature from every feature group 
in all 33 cases, but in only 8/33 cases for the Proposed 

pipeline. The number of features in the final model was 
smaller for the Proposed pipeline in 24/33 cases, and 
for renal vein invasion (RVI), inferior vena cava inva-
sion (IVC), wGII Max and Loss 9p21.3 the final model 
only involved shape features. We suggest that the more 
parsimonious models discovered by the Proposed pipe-
line are preferrable since they avoid over-interpreting 
or over-fitting the data.

Fig. 4 Violin plots showing the distribution in AUROCs across repeated cross‑validation obtained for different targets with different pipelines 
(Conventional and Proposed) and sub‑segmentation feature sets (whole, whole/high/low, whole/core/rim). The horizontal lines are the mean 
AUROCs and in almost all cases the difference in the mean value between the Conventional and Proposed pipelines is small compared 
to the variation across the cross‑validation splits
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Figure  5 presents a robustness analysis of the feature 
group selection step for the Proposed pipeline. Selecting 
the same feature group with high frequency in the CV 
splits is indicative of a stable model that is more likely to 
generalise well for new data.

With the Proposed pipeline, the shape feature group 
was selected in > 50% of CV splits for one or more ROI 
sets for Sarcomatoid change, RVI, IVC invasion, Overall 
Stage, wGII Max, and Loss 9p21.3, while MeshVolume 
was selected for Linear EvoST in > 90% of CV splits. For 
Sarcomatoid change and Overall Stage, the shape feature 
group was selected in > 60% of CV splits, buts only for 
models built using the whole/high/low ROI set.

Table  2 shows that features from all feature groups 
were present in the final model in all 33 cases with the 
Conventional pipeline, and further analysis demonstrated 
that this was true for all 500 CV splits in every case. Sta-
bility analysis of this kind is therefore not feasible for 
the Conventional pipeline and is only made possible by 

applying hierarchical CFR and the feature group selec-
tion step, as in the Proposed pipeline.

Model interpretations for specific targets
Here we interpret the results from the Proposed pipeline 
in more detail for the eleven targets of interest, grouped 
according to targets with similar observed patterns in the 
features selected in their respective models.

Necrosis, sarcomatoid change, overall stage 12 vs 34
These three targets are linked by the finding that mod-
els built using the whole/high/low ROI set involve only 
shape features (Table 2), whereas the other two ROI set 
models also include first-order and/or texture features, 
making interpretation more challenging for these ROI 
sets. For necrosis and overall stage, the whole/high/low 
models involved fewer features than the other ROI sets, 
while for sarcomatoid change, only the whole/high/low 
model reached significance (p = 0.026). Figure  5 shows 

Fig. 5 Analysis of which feature groups are selected for the targets of interest when feature group selection is used. The coloured bars show 
the frequency that each feature group was selected for each target across the repeated CV splits. For each target three sub‑segmentation feature 
sets were used (indicated by upper right box) and the text on the right‑hand side indicates which feature group was selected when a single model 
was estimated from the whole data set – in most cases this corresponds to the feature group with the widest coloured bar. EvoST = evolutionary 
subtype
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that whole/high/low models involving only shape fea-
tures were selected in > 60% of CV splits for sarcomatoid 
change and overall stage, and in > 45% of CV splits for 
necrosis, suggesting that this finding is relatively stable. 
The models for these targets obtained from the whole/
high/low ROI set are therefore of interest for further 
study in the larger cohort of 320 patients.

Overall stage is a measure of tumour size and spread to 
other organs and lymph nodes. Our results indicate that 
higher stages are associated with the presence of necro-
sis: the necrosis status concurs with the overall stage for 
71/91 tumours. Furthermore, all tumours with sarco-
matoid change had both necrosis and overall stage 3 or 
4. Such associations between the target variables may 
explain why models from the whole/high/low ROI set use 
only shape features for all three targets.

Figure 2 shows the high and low enhancing sub-regions 
are clearly visible in this tumour, which is typical for 
most cases in this study. Areas of macroscopic necrosis 
are expected to be contained within the low enhancing 
sub-regions (although the cause of low enhancement is 
not limited to necrosis), which may explain why sub-seg-
mentation into high and low enhancing regions is useful 
for predicting these targets. However, it seems a priori 
plausible that first-order or texture features (rather than 
shape features) from these sub-regions may also be pre-
dictive on the basis that these features could be sensitive 
to the presence of necrosis in the low-enhancing sub-
region. Two hypotheses warrant further investigation in 
the final cohort of 320 patients. 1) Only shape features 
of the sub-regions are informative, so developing shape 
metrics with increased sensitivity may improve perfor-
mance. 2) The signal from first-order or texture features 
is also informative and would boost performance but is 
too small to be detected in a sample of 91 tumours.

RVI, IVC, ITH index, wGII Max, Loss9p21.3
The AUROC performance in these targets is between 
0.680 and 0.862, and the common theme is that all five 
targets are associated with the shape feature group for 
the whole ROI set (Table 2 and Fig. 5). In all five targets 
the highest AUROC is achieved with the whole ROI set, 
suggesting that the shape of the tumour itself is predic-
tive – image heterogeneity (via texture and first-order 
features) within the tumour is not informative, and sen-
sitivity to image heterogeneity is not enhanced by either 
sub-segmentation method.

The features and LR coefficients of the best final mod-
els are detailed in Table 3, and for all targets the positive 
class is associated with lower Sphericity values (indicat-
ing more flattened tumour shapes) and larger tumour 
volumes. Sphericity is a dimensionless feature defined as 
3
√

36πV 2/A , ( V=volume, A=surface area), and it reaches 

a maximum value of 1 for a sphere and 0 for a disk. Flat-
ness (present in the RVI model only) is defined via the 
principal components of the tumour shape [13] and takes 
values in the same range. Whilst Sphericity and Flat-
ness are sensitive to similar aspects of the tumour shape, 
the Spearman correlation between them in these data 
is 0.58, indicating they contain somewhat independent 
information.

The associations between shape features and ITH 
index, wGII Max and Loss9p21.3 are consistent with pre-
vious findings showing that these targets are associated 
with tumour growth modes, such as surface or volume 
growth [19]. These radiomic findings suggest that devel-
oping and evaluating more advanced shape metrics may 
yield improved classification performance and insights 
into these relationships.

RVI and IVC invasion are processes that are sometimes 
detectable on CT scans by inspection of the relevant vas-
cular structures, but these image regions are not included 
in the ROIs used here for radiomic analysis. However, an 
association between these targets and tumour volume is 
plausible since larger tumours are more likely to impinge 
on surrounding structures. Follow-up work in the full 
cohort of 320 patients is needed to determine if these 
associations are reproducible, and a case-by-case analysis 
is warranted to further elucidate this finding.

Linear EvoST
The Proposed pipeline results indicate that MeshVolume 
is associated with Linear EvoST in a univariate model. 
For all three ROI sets, the Proposed pipeline selected 
only the MeshVolume of the whole tumour, and the LR 
coefficients were negative, indicating an inverse associa-
tion. Linear EvoST tumours are known to be smaller than 
branched or punctuated EvoSTs suggesting they may rep-
resent an earlier stage of the evolutionary trajectory [3]. 
The Conventional pipeline was not able to uncover this 
association in models built using any of the ROI sets.

Table 3 Logistic regression coefficients, AUROC and p‑values for 
five targets that are robustly predicted by three shape features 
from the whole tumour ROI using the Proposed pipeline

Target Logistic regression coefficients Performance

Sphericity Flatness MeshVolume AUROC p-value

Renal vein 
invasion

‑1.278 ‑0.551 0.246 0.862 < 0.01

IVC invasion ‑0.830 0.094 0.680 0.048

ITH Index ‑0.722 0.528 0.745 0.013

wGII Max ‑0.783 0.230 0.737 0.015

Loss 9p21.3 ‑1.29 0.367 0.814 < 0.01
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Branched EvoST
The highest performing model for this target used the 
whole ROI set and contained two first-order features: 
uniformity and mean. The LR coefficient signs indi-
cate that the Branched EvoST is associated with higher 
image heterogeneity (i.e., lower uniformity values) and 
higher mean HU values. The first-order feature group 
was selected in 49% of CV splits, indicating this finding is 
relatively stable, but more data are needed to discover if 
this result is generalisable.

Microvascular invasion (MVI)
MVI can be predicted with good performance 
(AUROC > 0.75) and is the only feature where every ROI 
set resulted in models that contain features from all fea-
ture groups. Figure 5 shows that there is also considerable 
variability in which feature group is selected, suggesting 
that this target would benefit from more data to support 
any detailed interpretation.

For all targets except MVI, the models obtained using 
the Proposed pipeline that are most relevant for fol-
low-up study involve only shape features or first-order 
features, and so MVI is the only target where texture fea-
tures appear to be informative. MVI is a histopathological 
finding related to both vessel co-option (invasion of exist-
ing vessels) and angiogenesis and is a process occurring 
at the capillary length-scale, i.e., somewhat smaller than 
the CT voxel size, and so spatial variability in the struc-
ture of the vascular invasion processes may give rise to 
variations in pixel intensity that appear as altered image 
texture. Further study in the larger cohort is needed to 
further explore this hypothesis.

Since the models discovered by the Proposed pipeline 
for this target involve features from all feature groups, 
this target benefits the least from using the Proposed 
pipeline. This is evidenced by the AUROC increase, 
smaller p-value and lower number of features for all ROI 
sets with the Conventional pipeline compared to the Pro-
posed pipeline for MVI prediction. Consideration of the 
impact of the feature group selection step suggests that 
this finding is to be expected since for every CV split 
where the ‘all’ feature group is not selected, the LR model 
will not have access to some of the features that would 
lead to good performance, and so the AUROC value for 
that CV split will be biased downward. The Conventional 
pipeline essentially selects the ‘all’ feature group for every 
CV split, and so is not subject to this effect.

Discussion
We have demonstrated that 11 of 20 targets of interest 
can be predicted with an AUROC significantly greater 
than 0.5 (p < 0.05), including six histopathological, two 
EvoST, ITH index (intratumoral heterogeneity), wGII 

Max (chromosomal complexity) and one somatic altera-
tion marker (Loss 9p21.3). Putative interpretations of the 
models generated from the Proposed pipeline have been 
presented for these 11 targets, of which five can be pre-
dicted with an AUROC > 0.8 (Necrosis, Renal vein inva-
sion, Overall stage, Linear EvoST, Loss 9p21.3), and are 
therefore targets of interest for further validation in the 
final TRACERx Renal cohort of 320 patients. This would 
represent a significant step forward in clinical practice by 
permitting improved patient risk stratification using non-
invasive investigations.

Contrary to previous studies [20–22], we were unable 
to predict BAP1 or PBRM1 status. However, sample 
sizes in previous studies were small (the largest com-
prising only 65 patients) and sampling bias arising from 
genetic profiling of a single tumour sample region can 
cause increased false negative detection rate. In TRAC-
ERx Renal, multi-region sampling permits more sensitive 
detection of somatic events determined by the presence 
of the alteration in any of the tumour regions sampled 
(one sample per  cm2 of the tumour slice).

Radiomic predictions of the clonal status of the somatic 
alterations were also explored, but none of these targets 
could be predicted in this study. It is likely that radiologi-
cal changes associated with different clones of the same 
genetic locus will be more subtle than changes associ-
ated with different genetic loci, and thus it is reasonable 
to assume that detecting mutational clonality from radio-
logical imaging will be particularly challenging.

Prediction of the punctuated EvoST did not reach sig-
nificance in these data which may be due to the one vs 
all classification that was used for the EvoSTs due to the 
small sample size in this study. Multinomial classification 
models may be required to handle the EvoST using radi-
omics, and the complete cohort of 320 patients will pro-
vide a more suitable data set for such development.

Two pipelines have been compared: the Conventional 
pipeline reflects standard practice in radiomics studies, 
and the Proposed pipeline includes two feature selec-
tion innovations tailored to radiomics studies that are 
designed to improve model interpretability. The AUROC 
performance is very similar for the Conventional and 
Proposed pipelines, suggesting that there is a high degree 
of redundancy between the radiomics features such that 
multiple combinations of features result in models with 
similar performance. This is a well-known effect with 
high-dimensional feature sets when the amount of train-
ing data is limited.

Generic feature selection techniques, whether they 
are based on filter, wrapper, or embedded methods, only 
consider the predictive potential of each feature, and 
not their interpretability. In the context of feature sets 
that exhibit redundancy, there is therefore no guarantee 
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that the use of generic feature selection techniques will 
result in a model that has the most straightforward inter-
pretation. The results for models predicting RVI, IVC, 
ITH index, wGII Max and Loss9p21.3 are a clear dem-
onstration of this – the AUROC estimates for the Con-
ventional and Proposed pipelines are equivalent, but the 
Proposed pipeline selected fewer features from only the 
shape feature group for these targets. The LR coefficient 
values from the Conventional pipeline are given in Table 
S2 for these targets showing that whilst Sphericity is the 
top feature in each case, first-order and texture features 
appear with non-negligible coefficient magnitudes, and 
MeshVolume is notably absent from all instances leading 
to quite different interpretations to the Proposed pipeline 
models.

The hierarchical CFR is a key innovation in the Pro-
posed pipeline and arises from the idea that a judgement 
on the a priori interpretability of features from differ-
ent feature groups can be used to intentionally bias the 
correlation-based feature selection step. Four feature 
groups were used in this study, but additional feature 
groups may be necessary with different radiomics fea-
ture sets. For example, filtered image features (wavelets, 
Laplacian of Gaussian, etc.) involve additional process-
ing steps and may be placed after texture features in the 
hierarchy, whereas previously validated semantic imaging 
features (e.g., PIRADS features) may be placed before all 
the radiomics feature groups. In general, the availability 
of a meaningful interpretation and/or biological or clini-
cal validation of the features within each group should be 
used to determine the group hierarchy.

It is interesting to note that the use of hierarchical CFR 
is critical for this data set because the MeshVolume and 
glszm_GrayLevelNonUniformity (glszm_GLNU) fea-
tures from the whole tumour ROI have a Spearman cor-
relation of 0.979. In this case, application of the standard 
CFR algorithm to these data results in MeshVolume 
being rejected in favour of glszm_GLNU. In those targets 
where MeshVolume is an important predictor, use of the 
standard CFR algorithm would mean the feature group 
selection step would be forced to retain the texture fea-
ture group, which would confound interpretation. This 
has clearly impacted the Conventional pipeline models 
for ITH index, wGII Max and Loss9p21.3 (see Table S2) 
where additional texture features are present in these 
models compared to those for the same targets in Table 3.

Tumour volume is a sufficiently well-known predictor 
that specific checks of the predictive power of this feature 
are included in some published radiomics studies. This 
is reflected in the hierarchy used here – MeshVolume is 
given special status by placing it in the first feature group, 
so it is always retained if it is correlated to any other fea-
ture. Texture features are placed at the other end of the 

hierarchy on the basis that they are in general more diffi-
cult to interpret – in many papers where texture features 
are discovered to be predictive, the interpretation given 
is that they are associated with “tumour heterogeneity”. 
Whilst this may be true, to fully elucidate the correla-
tions between texture features and biological processes 
in the spirit of Tomaszewski and Gilles [7], more specific 
biological interpretations of texture features are needed. 
Developing such interpretations is not the intention of 
this work, but rather we aim to develop a methodology 
that only retains texture features if there is sufficient evi-
dence to do so. Therefore, when a pipeline does select a 
texture feature it will be more likely that it is genuinely 
contributing texture information to the model, and so 
any attempt to link this to more well-understood biologi-
cal correlates will have a greater chance of success.

Combining the hierarchical CFR with an explicit group 
selection step is designed to increase the ability of the 
Proposed pipeline to reject features that are not informa-
tive. Treating the group selection as a tuning parameter 
which is optimised using an inner CV has two potential 
benefits. Firstly, the frequency with which each feature 
group is selected across the CV splits can be measured, 
which gives information on model robustness. Secondly, 
the use of CV for parameter tuning allows the complexity 
of the model (i.e., how many feature groups are selected) 
to adapt to the data, both in terms of any informative pat-
terns in the data, but also the data set size. Feature groups 
that lead to consistent performance improvements 
across the CV splits are likely to be selected, and this 
stability will tend to be greater in larger data sets since 
the different data splits will be statistically more simi-
lar. Conversely, if a feature group contains some weakly 
predictive features, then for a small data set the feature 
group is likely to be selected in fewer CV splits, and this 
can be detected in the feature group selection frequency.

Sub-segmentations were used in this study for two 
reasons. Firstly, spatial analysis of the surgical speci-
mens in the TRACERx study demonstrated different 
genomic profiles in tissue samples taken from the core 
and rim of the tumour [23]. We therefore hypothesized 
that if these differences also affect the CT images, then an 
equivalent sub-segmentation may yield a richer radiom-
ics feature set with greater predictive potential. Figure 2 
presents a typical example patient showing that whilst a 
geometric definition of the core and rim captures some 
of the image variation, an image-led sub-segmentation 
into high and low enhancing sub-regions may capture 
the heterogeneity present in the CT images more accu-
rately. The low enhancing sub-region is associated with, 
but not specific to necrosis, and so it was hypothesized 
that prediction of necrosis may be feasible using sub-
segmentation. The results in Table 2 and Fig. 5 indicate 
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that whilst necrosis can be predicted using CT radiomics, 
more data is needed to show which ROI set is most pre-
dictive, both in terms of prediction performance, and in 
the stability of the feature group selection. However, for 
sarcomatoid change and overall stage, Fig.  5 shows that 
there is strong evidence that the whole/high/low ROI set 
leads to models with simpler more interpretable features, 
and also improved performance for predicting sarcoma-
toid changes.

An advantage of the proposed group selection method 
is that it can be applied in conjunction with any predic-
tive model (e.g. support vector machines, random forest 
etc.), which is in contrast to the priority LASSO [24, 25] 
and the group LASSO [26] which have a similar aim, but 
can only be used with models that include LASSO regu-
larisation. The proposed approach is more general than the 
priority LASSO as it considers all feature group combina-
tions, whereas the priority LASSO considers a restricted 
set of combinations obtained by adding groups in a step-
wise manner according to some pre-determined priority 
sequence. Compared with the group LASSO, the proposed 
method differs in the form of the regularisation used, and 
consequently the level of sparsity and interpretability of 
the final models. The group LASSO uses  L1 regularisa-
tion between groups and  L2 regularisation within groups, 
whereas the proposed method uses  L0 between groups 
and  L1 within groups.  L0 and  L1 regularisation both result 
in sparse solutions, where unimportant features or fea-
ture groups are removed from the model, whereas with  L2 
regularisation the coefficients for unimportant features are 
shrunk towards zero, but they are still present in the model.

An important limitation of this study is the small sam-
ple size, which was also a key driver for the development 
of the proposed feature selection methods. On comple-
tion, the TRACERx study aims to recruit 320 patients, 
and so further work applying the proposed methods in 
this larger cohort will be of interest. A consequence of 
the small sample size is that the radiomics feature sets 
analysed here did not include the extended features avail-
able in pyradiomics that are derived using image filtering 
(e.g. wavelet filtering) as their inclusion would risk over-
fitting. Future work investigating the impact of the fea-
ture group selection methods with these extended feature 
sets in a suitable data set is of interest.

Conclusions
In conclusion, we have presented two novel feature 
selection strategies for use with radiomics studies and 
demonstrated that their combined use yields models 
with equivalent performance to a widely used pipe-
line. The proposed strategies also lead to models with 
fewer features meaning model interpretation is more 

straightforward across a range of eleven molecular, histo-
pathological and clinical targets. In addition, use of image 
sub-segmentations has been assessed, and preliminary 
analysis found improvements to classification model per-
formance and interpretability for a subset of the targets.
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