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Abstract
Background Spinal metastasis and multiple myeloma share many overlapping conventional radiographic imaging 
characteristics, thus, their differentiation may be challenging. The purpose of this study was to develop and validate 
an MRI-based radiomics nomogram for the differentiation of spinal metastasis and multiple myeloma.

Materials and methods A total of 312 patients (training set: n = 146, validation set: n = 65, our center; external test 
set: n = 101, two other centers) with spinal metastasis (n = 196) and multiple myeloma (n = 116) were retrospectively 
enrolled. Demographics and MRI findings were assessed to build a clinical factor model. Radiomics features were 
extracted from MRI images. A radiomics model was constructed by the least absolute shrinkage and selection 
operator method. A radiomics nomogram combining the radiomics signature and independent clinical factors was 
constructed. And, one experienced radiologist reviewed the MRI images for all case. The diagnostic performance of 
the different models was evaluated by receiver operating characteristic curves.

Results A clinical factors model was built based on heterogeneous appearance and shape. Twenty-one features 
were used to build the radiomics signature. The area under the curve (AUC) values of the radiomics nomogram (0.853 
and 0.762, respectively) were significantly higher than that of the clinical factor model (0.692 and 0.540, respectively) 
in both validation (p = 0.048) and external test (p < 0.001) sets. The AUC values of the radiomics nomogram model 
were higher than that of radiologist in training, validation and external test sets (all p < 0.05). Moreover, no significant 
difference in AUC values of radiomics nomogram model was found between the validation set and external test set 
(p = 0.212).

Conclusion The radiomics nomogram can differentiate spinal metastasis and multiple myeloma with a moderate 
to good performance, and may be as a valuable method to assist in the clinical diagnosis and preoperative 
decision-making.
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Background
Metastasis and multiple myeloma are two common 
malignant diseases involving the spine [1, 2]. These con-
ditions often result in pathological fractures with associ-
ated neurological complications, especially in the elderly 
[3]. In addition, the spinal metastasis shares many over-
lapping conventional radiographic imaging characteris-
tics with multiple myeloma, especially presenting with 
multiple osteolytic features [4]. However, their treatment 
decision and prognosis are significantly different. Thus, 
accurate distinction between spinal metastasis and mul-
tiple myeloma is vital for assessment of prognosis and 
choice of suitable treatment.

Previous reports attempted to distinguish spinal metas-
tasis and multiple myeloma with the use of MRI conven-
tional and functional imaging [5, 6]. By using diffusion 
weight imaging, Xing et al. [5] tried to differentiate spinal 
metastasis from multiple myeloma. Nevertheless, these 
studies were likely affected by an individual observer, 
thus, their diagnostic efficacy needs to be improved.

Nowadays, the increasing attention is being paid to 
radiomics studies, which is a novel non-invasive tech-
nique. Radiomics can extract more features from conven-
tional images and identify subtle changes beyond those 
detectable by visual assessment [7]. Previous studies 
have shown that radiomics had good value for the tumor 
diagnosis, grading, and prognostic evaluation [8–10]. 
Chianca et al. [11] reported the usefulness of radiomics 
analysis for distinguishing benign from malignant tumors 
in the spine. A previous study showed that the radiomics 
model could well differentiate metastasis from multiple 
myeloma based on MRI [12]. However, it mainly focused 
on influence of features number and the limited sample 
were collected from one center. So far comparative stud-
ies based on radiomics analysis in musculoskeletal radiol-
ogy are limited and more radiomics studies are necessary 
to provide a more comprehensive diagnosis analysis.

The purpose of this study was to develop and validate a 
radiomics nomogram incorporating radiomics signatures 
and clinical factors for differentiation of metastasis and 
multiple myeloma.

Materials and methods
Patients
Institutional review board approval was obtained, and 
patient informed consent was waived due to the retro-
spective nature of this study.

A total of 312 patients diagnosed with spinal metasta-
sis (n = 196) and multiple myeloma (n = 116) at three hos-
pitals between January 2016 to July 2021 were included. 
The inclusion criteria were as follows: (1) patients diag-
nosed with multiple myeloma according to the Inter-
national Myeloma Working Group Diagnostic Criteria 
[13] or metastatic tumors in the spine confirmed by 

pathological information; (2) presence of spinal lesions 
on MRI, including T1-weighted imaging (T1WI) and fat 
suppressed T2-weighted imaging (FS-T2WI) sequences. 
The exclusion criteria were as follows: (1) history of 
tumor therapy before MRI examination; (2) poor MRI 
image quality due to scanning conditions and lesion 
characteristics, such as vertebral fractures affecting the 
image signal; (3) presence of non-primary tumors outside 
the bone.

Finally, 211 patients (mean age ± standard deviation, 
60.1 ± 10.7 years; 127 men), i.e., 144 with spinal metas-
tasis and 67 with multiple myeloma from Shandong 
Provincial Hospital Affiliated to Shandong First Medi-
cal University were randomly assigned to the train-
ing and validation sets at a ratio of 7:3. An external set 
contained 101 patients (mean age, 63.2 ± 10.9 years; 64 
men), including 40 patients (mean age, 65.1 ± 10.8 years; 
23 men), i.e., 20 with spinal metastasis and 20 with mul-
tiple myeloma from Shandong Province Yuhuangding 
Hospital, and 61 patients (mean age, 62.0 ± 10.9 years; 41 
men), i.e., 32 with spinal metastasis and 29 with multiple 
myeloma from Shandong Province Qianfoshan Hospital. 
The flowchart for selecting the study population is shown 
in Fig. 1.

MRI protocol
The MRI was performed on 3.0 Tesla MR scanners (Mag-
netom Skyra, Siemens Healthineers; Prisma, Siemens 
Healthineers; Magnetom Spectra, Siemens Healthineers) 
and followed a similar protocol. The scanning sequence 
parameters for T1WI were as follows: repetition time 
(TR), 400–800 ms; echo time (TE), 10–30 ms; field of 
view, 320 × 320 mm; slice thickness, 3.0 mm; slice spacing, 
1.0 mm. Settings for FS-T2WI were as follows: TR, 2000-
4200ms; TE, 70–110 ms; field of view, 320 × 320 mm; slice 
thickness, 3.0 mm; slice spacing, 1.0 mm.

Development of clinical factor model
Clinical factors including age, gender, diameter, margin 
(well-defined/ill-defined), heterogeneous appearance 
(present/absent), shape (regular/irregular), and number 
of lesions (single/multiple) were obtained. The heteroge-
neous appearance was defined as necrosis, cystic areas, 
hemorrhage and calcification in the lesion. In order to 
standardize the definition of lesion shape, all round or 
oval tumors were considered as regularly shaped; all 
others were considered as irregularly shaped. The inde-
pendent samples t tests and chi-square or Fisher’s exact 
tests were applied to compare the differences of the clini-
cal factors between the spinal metastasis and multiple 
myeloma. Next, a multiple logistic regression analysis 
was performed to build the clinical factor model by the 
above results with p < 0.05. Odds ratios as estimates of 
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relative risk with 95% confidence intervals were calcu-
lated for each independent factor.

Image segmentation and radiomics feature extraction
Tumor segmentation and feature extraction were per-
formed with a post-processing platform (Lianying Medi-
cal Technology Co., Ltd). Segmentation was performed 
on the MR images including T1WI and FS-T2WI. 
Regions of interests (ROIs) were manually selected and 
delineated in the largest lesion. If there was extra-osse-
ous extension of the lesion, it was also contoured. The 
necrosis, cystic areas, hemorrhage and calcification in 
the lesion were included. Contouring was drawn within 
the border of the tumor and the adjacent normal tissues 
were not covered. Two radiologists (SZ and MHL, with 
7 and 8 years of experience in tumor radiology, respec-
tively) independently performed the ROI segmentation 
and were blinded to the clinical data.

Development of radiomics signature and radiomics 
nomogram, evaluation of radiologist
The radiomics features were selected by intraclass corre-
lation coefficients (ICCs) > 0.75, significance in one-way 
analysis of variance (ANOVA), and finally using select_k_
best method and the least absolute shrinkage and selec-
tion operator (LASSO) regression model in the training 
cohort. Then, the final selected features were applied to 
build a radiomics signature model. A radiomics score 
(known as radiomics signature) was calculated by a lin-
ear combination of selected radiomics features whose 
weights were based on logistic regression. Finally, a 

radiomics nomogram was developed by combining 
the significant variables of the clinical factors and the 
radiomics signature.

One radiologists (XMX, 14 years of experience in mus-
culoskeletal radiology) independently reviewed MRI 
examinations for all cases, for purposes of comparison 
with the radiomics model.

Assessment of the performance of different models
The diagnostic performance of four models (the clini-
cal factor model, the radiomics signature model, the 
radiomics nomogram model, and one experienced radiol-
ogist) for identification of spinal metastasis and multiple 
myeloma was evaluated from the area under the curve 
(AUC) of the receiver operator characteristic (ROC) 
curve in the training, validation and external test sets at 
the same time. In order to assess the clinical usefulness 
of nomogram, a decision curve analysis (DCA) was per-
formed by calculating the net benefits.

Statistical analysis
Univariable analysis was used to compare differences in 
the clinical factors between the spinal metastases and 
multiple myeloma, with an independent samples t-test 
for quantitative data and chisquare or Fisher’s exact tests 
for qualitative data, as appropriate. One-way ANOVA 
was used to compare the value of each radiomics fea-
ture for the differentiation of spinal metastasis and 
multiple myeloma. Differences in the AUC values of 
different models were estimated using the Delong test. 
The calibration of the nomogram was estimated by 

Fig. 1 Flow diagram of the study
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Hosmer-Lemeshow. The clinical usefulness of nomo-
gram was assessed by DCA. Comparison of sensitivity, 
specificity, and accuracy of models were performed with 
the McNemar’s test. p < 0.05 indicated statistical signifi-
cance. Statistical analysis was performed using SPSS (ver-
sion 22.0, IBM) and R statistical software (version 3.3.3, 
https://www.r-project.org).

Results
Patient characteristics
Seventy-three patients with a history of tumor therapy 
before the MRI examination, 42 patients who had poor 
MRI image quality, and 12 patients with non-primary 
tumors outside the bone were excluded. Finally, a total 
of 312 patients (mean age, 61.1 ± 10.9 years; 191 men) 
with 196 spinal metastasis and 116 multiple myeloma 
were included in this study. The primary cancers of spi-
nal metastasis included lung cancers (n = 94), breast can-
cer (n = 18), prostate cancer (n = 13), liver cancer (n = 13), 
renal cancer (n = 9), esophageal cancer (n = 9), stomach 
cancer (n = 8), rectal cancer (n = 8), colon cancer (n = 7), 
thyroid cancer (n = 5), pancreatic cancer (n = 4), thymic 
cancer (n = 3), nasopharyngeal carcinoma (n = 2), endo-
metrial carcinoma (n = 2), and cervical cancer (n = 1).

Clinical factors of the patients and construction of the 
clinical factor model
Tumor diameter, heterogeneous appearance and shape 
showed significant differences between the spinal metas-
tasis and multiple myeloma (p < 0.05) in training set. The 
multiple logistic regression analysis showed that het-
erogeneous appearance (p = 0.010) and shape (p = 0.005) 
remained independent predictors in the clinical factor 
model. The clinical and radiological characteristics of 
tumors are described in Table 1.

Feature extraction, selection, and radiomics signature 
establishment
In total, 2818 radiomics features extracted from T1WI 
and FS-T2WI, 1534 features with ICCs from 0.75 to 1 
were tested by ANOVA, revealing 1161 features with 
significant differences between spinal metastasis and 
multiple myeloma (p < 0.05). The select_k_best method 
was used to eliminate the redundant and irrelated fea-
tures. The remaining 695 features were then included in 
the LASSO to select the most valuable features. Twenty-
one features building the radiomics signature were finally 
selected by LASSO. The detailed 21 features are shown 
in Supplementary Table 1. A radiomics score was calcu-
lated using the formula: radiomics-score = Coefficient × 
Radiomics features. The coefficient and radiomics fea-
tures are detailed in Supplementary Table 1.

The radiomics nomogram establishment and assessment 
of the performance of different models
The radiomics-score, heterogeneous appearance and 
shape were incorporated into the radiomics nomogram 
model (Fig.  2). The Fig.  2 showed radiomics nomogram 
had a good calibration by calibration curve and the Hos-
mer-Lemeshow test.

The diagnostic performances of the clinical factor 
model, radiomics signature, and radiomics nomogram 
are summarized in Table 2. The ROC curves of the three 
models for the training, validation and external test sets 
are shown in Fig. 3.

In the training set, the AUC values of radiomics nomo-
gram were higher than radiomics signature (0.856 vs. 
0.847, p = 0.342) and clinical factor model (0.856 vs. 
0.715, p = 0.046). The AUC values of the radiomics nomo-
gram (0.853 and 0.762, respectively) were significantly 
higher than that of the clinical factor model (0.692 and 
0.540, respectively) in both the validation (p = 0.048) 
and external test (p < 0.001) sets. No significant differ-
ence (p = 0.265) in AUC values of radiomics signature 

Table 1 Clinical factors of the training, validation and external sets
Characteristics Training set (n = 146) Validation set (n = 65) External test set 

(n = 101)
Metastasis(n = 100) Myeloma

(n = 46)
P Metas-

tasis
(n = 44)

Myeloma
(n = 21)

P Metas-
tasis
(n = 52)

Myeloma
(n = 49)

P

Age (year) 60.0 ± 11.2 59.8 ± 10.1 0.910 60.3 ± 10.4 61.1 ± 11.4 0.766 62.1 ± 12.8 64.4 ± 8.4 0.287

Gender (male/female) 60/40 26/20 0.692 27/17 14/7 0.679 32/20 32/17 0.694

Diameter (cm) 2.1 ± 1.0 1.7 ± 1.5 0.044 2.4 ± 1.6 1.6 ± 0.9 0.032 2.2 ± 0.9 1.5 ± 0.7 < 0.001

Margin
(well-defined/ill-defined)

63/37 22/24 0.840 29/15 11/10 0.294 28/24 33/16 0.166

Heterogeneous appearance (present/
absent)

76/24 22/24 0.001 36/8 10/11 0.005 39/13 38/11 0.763

Shape (regular/irregular) 17/83 22/24 < 0.001 6/38 12/9 0.001 15/34 7/45 0.037

Number of lesions (single/multiple) 8/92 5/41 0.572 4/40 3/18 0.527 5/47 4/45 0.798
Continuous variables are presented as mean± standard deviation, categorical data as numbers (n)

https://www.r-project.org
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model was found between the validation set (AUC, 
0.743; 95%CI, 0.668–0.861) and external test set (AUC, 
0.754; 95%CI, 0.595–0.748). And, no significant differ-
ence (p = 0.212) in AUC values of radiomics nomogram 
model was found between the validation set (AUC, 0.853, 
95%CI, 0.764–0.919) and external test set (AUC, 0.762, 
95%CI, 0.605–0.751). In external test set, the sensitivity 
(78.8% vs. 71.2%, p < 0.05), specificity (67.1% vs. 63.3%, 
p < 0.05), and accuracy (68.3% vs. 67.3%, p > 0.05) of 
nomogram model were higher than radiomics signature 
model.

The DCA for the three models is shown in Fig. 4. The 
decision curve analysis showed the radiomics nomogram 
had a higher overall net benefit in differentiating spinal 
metastasis and multiple myeloma than the clinical factor 
model across the most reasonable threshold probabilities.

Comparison between the Radiomics Model and 
Radiologist
The AUC values were 0.711 (95%CI, 0.630–0.783), 0.613 
(95%CI, 0.484–0.731), and 0.632 (95%CI, 0.531–0.726) 
respectively in training, validation, and external test sets 
for radiologist. The sensitivity, specificity, and accuracy, 
respectively, were 77.0%, 65.2%, and 73.3% in training 
set; 75.0%, 47.6%, and 66.2% in validation set, and 67.3%, 
59.2%, and 63.4% in external test set.

The AUC values of the radiomics nomogram and 
radiomics signature model were higher than that of radi-
ologist in training set (both p < 0.05). The AUC values of 
the radiomics nomogram model were higher than that 
of radiologist in validation and external test sets (both 
p < 0.05). However, there were no differences between the 
AUC values of the radiomics signature model and those 
of radiologist in validation and external test sets (both 
p > 0.05). Figures 5 and 6 show MRI images in represen-
tative patients with myeloma and metastasis, along with 

Fig. 2 The radiomics nomogram and calibration curves for the radiomics nomogram. (a) The radiomics nomogram, combining rad-score, heteroge-
neous-appearance and shape, developed in the training set. Calibration curves for the radiomics nomogram in the training (b), validation (c) and external 
test sets (d). Calibration curve indicates the goodness-fit for the nomogram. The 45° dotted line represents an ideal prediction, and the other dotted line 
represents the predictive performance of the nomogram. A closer distance between two lines indicates better prediction. The solid line represents the 
bias corrected
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the interpretations by the two radiologists and nomo-
gram results in these patients.

Discussion
The accurate differentiation of metastasis and multiple 
myeloma is of great clinical significance, because their 
treatment decision and prognosis differ according to 
lesion nature. Spinal metastasis and multiple myeloma 
share many overlapping imaging characteristic, especially 
multiple osteolytic features, making the differential diag-
nosis rather difficult by conventional imaging modalities. 
In this study, we developed the radiomics nomogram for 
distinguishing metastasis from multiple myeloma with an 
AUC of 0.856, 0.853 and 0.762, respectively, in the train-
ing set, validation set, and external test set.

Sufficient clinical and imaging information facilitate 
the correct distinction between spinal metastasis and 
multiple myeloma. The obvious primary tumor or tumor 
history contributed to the diagnosis of spinal metas-
tasis [14]. Additionally, quantifying M-protein in the 
serum and urine are valuable for the diagnosis of mul-
tiple myeloma [15]. In this study, compared with multi-
ple myeloma, spinal metastasis had a higher prevalence 
of irregular shape (84.7% versus 56.9%; p < 0.001), which 
could be because spinal metastasis in this study tends 
to show higher infiltration into the surrounding tissue 
than multiple myeloma. And spinal metastasis showed 
a more heterogeneous signal appearance (75.0% versus 
62.9%; p = 0.024) than multiple myeloma, which is consis-
tent with previous studies [16]. We speculate that these 
results may be related to histologic features of multiple 
myeloma, which has a compact arrangement of myeloma 
cells and small interstitial space, leading to lower hetero-
geneity [17]. In the current study, multiple logistic regres-
sion analysis revealed that heterogeneous appearance 
and shape were independent predictors. However, the 
clinical factor model did not achieve high AUC (0.715 in 
the training set; 0.692 in the validation set; 0.540 in the 
external test set) for differentiating spinal metastasis and 
multiple myeloma.

Previous studies have investigated the relationship 
between the spinal metastasis and multiple myeloma 
using imaging tools [18, 19]. Li et al. [18] retrospectively 
analyzed 344 patients with multiple myeloma and bone 
metastasis by position emission tomography and showed 
the SUVmax values of multiple myeloma (1.6 ± 0.7) were 
lower than that of spinal metastasis (5.5 ± 2.7; p = 0.000). 
The best cutoff value of SUVmax for differentiating mul-
tiple myeloma and spinal metastasis was 2.65 (sensitiv-
ity 86.1% and specificity 94.7%; p = 0.000) [18]. However, 
due to its high costs, position emission tomography is 
not always available in clinical settings, which limits 
its wide application. Moreover, Lang et al. [19] applied 
dynamic contrast-enhanced MRI to differentiate between Ta
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spinal metastasis and multiple myeloma, showing that 
the wash-out pattern was significantly higher in the 
myeloma group than the metastatic group (9/9 = 100% vs. 
12/22 = 55%, p = 0.03). However, Lang’s study was based 
on small sample size and increasing scanning time. Pre-
vious reports attempted to distinguish spinal metastasis 

from multiple myeloma using diffusion weighted mag-
netic resonance imaging [5, 6]. Xing et al. [5] studied 53 
metastasis and 16 myeloma patients who underwent MRI 
with 10 b-values and found that the ADC, D, and α val-
ues of metastases were higher than those of myeloma, 
whereas the D* value was lower than that of myeloma 
(p < 0.05). However, the region of interest of this study 
was placed on the solid component of the tumor to calcu-
late the average value, which may not be appropriate for 
assessing tumor heterogeneity.

Over recent years, radiomics analyses have been 
increasingly applied to the tumor diagnosis, grading, 
and prognostic evaluation [8–10]. Radiomics features 
may be associated with pathology and genome [20]. 
Successful applications of radiomics in spine have been 
reported in differentiating benign spinal tumors from 
malignant tumors, and discriminating primary spinal 
tumors and metastases [11, 21]. Vannier et al. [21] devel-
oped a radiomics model to differentiate bone islands 
from spinal osteoblastic bone metastases in CT, resulting 
in an AUC of 0.96. Previous investigations have shown 
that radiomics analysis can differentiate between spinal 
metastasis from multiple myeloma [12, 22]. Yildirim et 
al. [22] applied the CT histogram analysis to differentiate 
the multiple myeloma from lytic bone metastases. In his-
togram analysis, minimum, median, and maximum gray 
level parameters were found to be significantly higher 
in lytic bone metastases (p < 0.001) [22]. However, the 
modality of examination in their study was CT. CT scan 
has radiation and is less visible than MRI for soft tissue 
[23]. In our study, we chose MRI modality. MRI is consid-
ered an ideal initial screening modality for patients with 
suspected spinal multiple myeloma and metastasis due 
to its excellent tissue contrast [24, 25]. In addition, bone 

Fig. 4 Decision curve analysis for three models. The y-axis indicates the 
net benefit; x-axis indicates threshold probability. The blue line, green line, 
and red line represent net benefit of the clinical factor, the radiomics sig-
nature, and the radiomics nomogram, respectively. The nomogram model 
had a higher net benefit in differentiating spinal metastasis and multiple 
myeloma than the other two models and simple diagnoses such as all spi-
nal metastasis patients (gray line) or all multiple myeloma patients (black 
line), across the full range of threshold probabilities at which a patient 
would be diagnosed as spinal metastasis

 

Fig. 3 The receiver operating characteristic curves of the clinical factor model, the radiomics signature model, and radiomics nomogram model in 
the training (a), validation (b) and external test (c) sets, respectively. In training set, the AUC values of radiomics nomogram was higher than radiomics 
signature (0.856 vs. 0.847, p = 0.342) and clinical factor model (0.856 vs. 0.715, p = 0.046). The AUC values of the radiomics nomogram (0.853 and 0.762, 
respectively) was significantly higher than that of the clinical factor model (0.692 and 0.540, respectively) in both the validation (p = 0.048) and external 
test (p < 0.001) sets
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Fig. 6 Image examples of myeloma and metastasis which were misdiagnosed by radiologist, and application of nomogram to predict probability of 
metastasis. (a, b) MRI shows multiple lesions in the spine. And some of the lesions presents heterogeneous appearance and irregular shape on MRI. 
Patient was diagnosed with myeloma by the International Myeloma Working Group Diagnostic Criteria. The experienced radiologist incorrectly rendered 
diagnosis of metastasis. (c, d) MRI shows the single lesion in the spine, which presents homogenous appearance and irregular shape on MRI. Patient was 
diagnosed with metastasis by pathological evaluation. The experienced radiologist incorrectly rendered diagnosis of myeloma. (e) Nomogram shows 
determination of risk of metastasis in both patients. For patient in a, b (red arrows), nomogram yields total of 61.1 points and corresponding risk of me-
tastasis of less than 0.4. For patient in c, d (blue arrows), nomogram yields total of 123.3 points and corresponding risk of metastasis of greater than 0.7. 
Thus, nomogram rendered correct diagnosis in both patients

 

Fig. 5 Image examples of typical myeloma and metastasis, and application of nomogram to predict probability of metastasis. Nomogram shows points 
assigned for each predictor. Total number of points is calculated by adding points assigned for all variables and is then used to determine corresponding 
risks of metastasis. (a, b) MRI shows multiple lesions in the spine. And some of the lesions presents heterogeneous appearance and irregular shape on 
MRI. Patient was diagnosed with metastasis by pathological evaluation. The experienced radiologist correctly rendered diagnosis of metastasis. (c, d) MRI 
shows multiple lesions in the spine. And some of the lesions presents homogenous appearance and regular shape on MRI. Patient was diagnosed with 
myeloma by the International Myeloma Working Group Diagnostic Criteria. The experienced radiologist correctly rendered diagnosis of myeloma. (e) 
Nomogram shows determination of risk of metastasis in both patients who had multiple lesions on MRI. For patient in a, b (red arrows), nomogram yields 
total of 136.5 points and corresponding risk of metastasis of greater than 0.9. For patient in c, d (blue arrows), nomogram yields total of 65.5 points and 
corresponding risk of metastasis of less than 0.4. Thus, nomogram rendered correct diagnosis in both patients
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marrow infiltration can be visualized by MRI even before 
lytic changes occur [26]. A previous study showed that 
the MRI radiomics model could well differentiate metas-
tasis from multiple myeloma [12]. However, it mainly 
focuses on influence of features number and the limited 
sample were collected from one center. In our study, we 
analyzed 312 patients from multiple centers and devel-
oped different models to differentiate spinal metastasis 
from multiple myeloma, providing more comprehensive 
diagnosis analysis.

In our study, we firstly developed the radiomics 
nomogram for distinguishing metastasis and mul-
tiple myeloma. The nomogram analysis incorporating 
radiomics signatures and clinical factors can provide 
more synthetic evidence than conventional approaches, 
with an AUC of 0.856, 0.853 and 0.762, respectively, in 
the training set, validation set, and external test set. In 
addition, compared with most previous studies using data 
from only one center, patients in external test set in our 
study were from different hospitals, yielding more reliable 
results. Moreover, we showed no significant difference in 
AUC values of radiomics nomogram model between the 
validation set and external test set. Our radiomics analy-
sis was based on conventional non-contrast MRI, includ-
ing T1WI and FS-T2WI, which can not add additional 
scanning time and can be suitable for patients with renal 
dysfunction or adverse reactions to contrast injection. 
However, it is possible that differentiation ability could be 
improved by including advanced MRI image information, 
such as contrast images and diffusion weight images, 
which should be further investigated.

Previous studies reported that different MRI scanners 
with different MRI protocols can lead to inconsisten-
cies in quantitative measurements from these images, 
which could influence features dimension and reproduc-
ibility [27]. And several a successive study has demon-
strated that the feature reproducibility can be improved 
when a image normalization to muscle tissue is applied 
[28]. Thus, in our study, in order to eliminate the influ-
ence of dimension between features and make the inten-
sity information consistent, the images were normalized 
before analysis, which could be helpful to eliminate the 
interference caused by the inconsistent image quality 
caused by different MRI manufactures or different MRI 
protocols. In addition, the radiomics signature model 
show a very similar, even slightly better performance in 
the external multicentric test set (AUC 0.754) compared 
to the internal validation set (0.743). This may be because 
the data sample distribution is more balanced (metastasis 
vs. myeloma: 52 patients vs. 49 patients) in external test 
set with stronger generalization compared to the internal 
validation set (metastasis vs. myeloma: 44 patients vs. 21 
patients).

Some limitations of this study should be noted. First, it 
is a retrospective study, so further prospective research 
is required. We are now following up these patients 
to assess their prognosis. And the present retrospec-
tive study is fundamental to prospective research. Sec-
ond, MRI acquisition parameters were not consistent 
due to multi-institutional nature of the study. Third, 
the lesions were multiple, however, our ROI acquisi-
tion was only for the largest lesion. The pathology was 
record from the largest spinal lesion, and it was consid-
ered to reflect the lesion characteristics more accurately, 
so the largest lesion was selected for radiomics analysis. 
Fourth, our study included only radiomics analysis of 
focal lesions but not surrounding tissue. A prior study 
demonstrated that in an MRI bone marrow radiomics 
analysis, focal myeloma pattern and diffuse myeloma pat-
tern lead to distinctive radiomics signatures, and several 
radiomics features from the surrounding tissue was valu-
able for assessing the myeloma [29]. Further researches 
about surrounding tissue of lesions with a larger sample 
size and more detailed clinical and radiomics data are 
warranted.

Conclusion
In conclusion, our study developed a MRI-based 
radiomics nomogram that can predict whether a bone 
lesion is rather a myeloma lesions or rather a bone metas-
tasis with a moderate to good performance. The diag-
nostic performance of the radiomics nomogram was 
superior to radiomics signatures model and clinical fac-
tors model. Therefore, it was presented as a non-invasive 
and valuable method for differentiating between spinal 
metastasis and multiple myeloma.
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