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Abstract 

Background To build and validate a radiomics nomogram based on preoperative CT scans and clinical data 
for detecting synchronous ovarian metastasis (SOM) in female gastric cancer (GC) cases.

Methods Pathologically confirmed GC cases in 2 cohorts were retrospectively enrolled. All cases had presurgical 
abdominal contrast‑enhanced CT and pelvis contrast‑enhanced MRI and pathological examinations for any suspicious 
ovarian lesions detected by MRI. Cohort 1 cases (n = 101) were included as the training set. Radiomics features were 
obtained to develop a radscore. A nomogram combining the radscore and clinical factors was built to detect SOM. 
The bootstrap method was carried out in cohort 1 as internal validation. External validation was carried out in cohort 2 
(n = 46). Receiver operating characteristic (ROC) curve analysis, decision curve analysis (DCA) and the confusion matrix 
were utilized to assess the performances of the radscore, nomogram and subjective evaluation model.

Results The nomogram, which combined age and the radscore, displayed a higher AUC than the radscore and sub‑
jective evaluation (0.910 vs 0.827 vs 0.773) in the training cohort. In the external validation cohort, the nomogram 
also had a higher AUC than the radscore and subjective evaluation (0.850 vs 0.790 vs 0.675). DCA and the confusion 
matrix confirmed the nomogram was superior to the radscore in both cohorts.

Conclusions This pilot study showed that a nomogram model combining the radscore and clinical characteristics 
is useful in detecting SOM in female GC cases. It may be applied to improve clinical treatment and is superior to sub‑
jective evaluation or the radscore alone.

Keywords Gastric cancer, Radiomics, CT, Synchronous ovarian metastasis

†Qian‑Wen Zhang and Pan‑Pan Yang are the joint first authors in the paper.

†Qi Chen and Fu Shen have contributed equally to this work.

*Correspondence:
Qi Chen
cqchenqi1989@163.com
Fu Shen
ssff_53@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40644-023-00584-5&domain=pdf
http://orcid.org/0000-0001-8596-9563


Page 2 of 11Zhang et al. Cancer Imaging           (2023) 23:71 

Background
Gastric cancer (GC) is the third deadliest malignancy, 
with over 1 million newly diagnosed cases and approxi-
mately 76,900 deaths in 2020, causing a massive burden 
worldwide [1, 2]. Distant metastasis is one of the major 
factors contributing to high mortality in GC. Ovar-
ian metastasis, a unique kind of distant metastasis in 
females, is not rare in gastric cancer, especially in Asian 
countries [3]. For example, in Japan, metastases account 
for almost 20% of all ovarian malignancies, and the 
most common primary site is the stomach [4]. In clini-
cal studies, the reported incidence of ovarian metas-
tasis ranged from 0.3% to 6.7% in female GC patients. 
However, according to autopsy studies, an incidence 
of 33–41% was found for ovarian metastasis [5]. The 
inconsistency between these clinical and autopsy stud-
ies indicated that the incidence of ovarian metastasis 
might be underestimated in real-world practice.

Ovarian metastasis (OM) in GC patients is corre-
lated with poor prognosis, showing a median overall 
survival of 11  months [6, 7]. Moreover, synchronous 
ovarian metastasis (SOM), defined as OM observed 
within 6  months of the first GC diagnosis, exhibits 
shorter overall survival compared with metachronous 
ovarian metastasis [4, 8]. In female GC patients, pre-
operative detection of SOM is essential for tumor stag-
ing and treatment decision making, providing baseline 
information for individual treatment. When SOM is 
detected preoperatively, the role of aggressive surgi-
cal approach remains controversial, and multidiscipli-
nary team (MDT) discussion is required for individual 
treatment strategies. Improving outcomes in patients 
affected by metastatic GC represents an urgent clinical 
need. Several novel therapies are under investigation, 
including margetuximab, HER2-targeted therapies, and 
immunotherapy [9–12].

Precise preoperative diagnosis of SOM is challenging in 
clinical practice. Indeed, the symptoms of ovarian metas-
tasis are variable and nonspecific. Although ultrasound, 
CT and MRI are useful for detecting ovarian masses, the 
imaging features of ovarian metastases sometimes may 
be atypical and misleading [7]. When occurring unilater-
ally, ovary metastasis could be hardly differentiated from 
primary ovarian tumors. Moreover, in some cases, an 
ovarian mass constitutes the initial sign of cancer. About 
7% of ovarian tumors that present as primary ovarian 
neoplasms are known to be ovarian metastases [13]. In 
case the possibility of metastatic carcinoma is not con-
sidered, treatment options may be adversely affected. 
On account of management differences and prognostic 
implications, invasive histopathological approaches such 
as biopsy and exploratory laparotomy are often required 
for a confident diagnosis [13].

In the past decades, researchers have focused on the 
clinical characteristics, treatment methods and prognos-
tic analysis of ovarian metastasis [8–16]. Studies have 
determined the risk factors for ovarian metastasis in 
GC patients; however, there have been no reliable mod-
els applied to clinical practice so far. Gao et  al.reported 
premenopausal status, tumor invasion depth, number of 
positive lymph nodes, and no ERβ expression as factors 
independently predicting metachronous ovarian metas-
tasis [17]. Li et al.constructed a nomogram including age, 
N stage, Lauren type, signet-ring cell component, estro-
gen receptor expression, neutrophil/lymphocyte ratio, 
and serum CA125 for predicting ovarian metastasis in 
GC, with an area under the curve (AUC) for the model 
of 0.819 [18]. However, both synchronous and metachro-
nous ovarian metastases were involved in this study, 
which may not mimic the real-world setting. SOMs need 
to be detected preoperatively, and a reliable and nonin-
vasive method is required to detect SOM in GC patients.

Recently, several reports have demonstrated radiom-
ics may help radiologists solve tough clinical tasks. By 
extracting numerous quantitative features from medical 
images via high-throughput analysis, radiomics could 
enable radiologists to improve diagnostic accuracy, which 
eventually would benefit patients. Radiomics-based mod-
els have shown a promising value in the detection of 
occult peritoneal metastasis and lymph node metastasis 
in GC [19–24].

To our knowledge, a radiomics nomogram for the 
detection of SOM in GC patients has not been devel-
oped. Therefore, the aim of the present work was to build 
a CT-based radiomics nomogram model for preoperative 
detection of SOM and to evaluate its clinical application 
in female GC patients.

Methods
Participants
The trial followed the Declaration of Helsinki and had 
approval from the Ethics Committees of Changhai hos-
pital and Ruijin Hospital Luwan Branch. Due to a ret-
rospective design, signed informed consent was not 
required.

From January 2019 to March 2022, 174 females with 
GC detected pathologically at Changhai Hospital were 
enrolled in this retrospective trial. Inclusion criteria 
were: (1) gastric adenocarcinoma diagnosed by biopsy 
or postoperative pathological examination; (2) gastric 
adenocarcinoma as single focus; (3) both abdominal 
contrast-enhanced CT examination and pelvis contrast-
enhanced MR examination performed at the time of 
diagnosis; (4) pathological examinations performed for 
any suspicious ovarian lesions detected by MRI. Exclu-
sion criteria were: (1) local or systemic treatment prior 
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to baseline CT scan (n = 46); (2) previously diagnosed or 
concurrent cancers other than GC (n = 3); (3) poor image 
quality (n = 7); (4) metachronous ovarian metastasis 
(n = 12); (5) clinically suspected SOM but not pathologi-
cally confirmed (n = 5). Therefore, 101 cases were finally 
included for final analysis as cohort 1. Then, 46 patients 
meeting the eligible criteria in Ruijin Hospital Luwan 
Branch between January 2021 and March 2022 were also 
enrolled as cohort 2.

Clinicopathologic data
Patient information and clinical findings were retrospec-
tively retrieved from the clinicopathological databases, 
e.g., age, tumor location (including the upper third, mid-
dle third and lower third of the stomach), carcinoem-
bryonic antigen (CEA), carbohydrate antigen 19–9 
(CA19-9), carbohydrate antigen 125 (CA125) and car-
bohydrate antigen 72–4 (CA 724), were recorded at the 
same time as CT scans (time interval < 2 weeks). All cases 
were pathologically confirmed as GC, then categorized 
into 2 groups, including the SOM and no-SOM groups. 
All pathological SOMs extracted from surgical speci-
mens were confirmed by pathological findings.

Image acquisition and analysis
Routine contrast-enhanced abdominal CT was performed 
on a multidetector row CT (MDCT) system (Aquilion, 
TOSHIBA, Japan; iCT256, PHILIPS, Netherlands) after 
4 h of fasting. Supine patients were intravenously injected 
an iodinated contrast agent at 80–95  ml (Optiray, Liebel-
Flarsheim Canada, Canada) at 3.0 or 3.5  ml/s. This was 
followed by arterial and portal venous phase contrast-
enhanced CT after delays of 28  s and 50  s, respectively. 
CT images were acquired at 120  kV, 100 to 150  mA and 
0.5  s rotation time. Contrast-enhanced CT images were 
reconstructed with the following parameters: field of view, 
350 × 350 mm; data matrix, 512 × 512; in-plane spatial reso-
lution, 0.6 mm; axial slice thickness, 5.0 mm; spiral pitch, 1.

Subjective evaluation for SOM was performed by 3 
radiologists with systematic training, including QW. 
Z., PP. Y. and F. S. with 8, 9 and 12  years of experience 
in CT diagnosis, respectively, who had no knowledge of 
pathological data. Any discrepancy among them was dis-
cussed until an agreement was reached by at least 2 of 
these experts. The Kappa statistic was used to evaluate 
interobserver correlation between two given radiologists. 
Intraclass correlation coefficient (ICC) was determined 
for evaluating consistency among the three radiologists.

Image segmentation
The acquired DICOM data (portal venous phase CT scans) 
were preprocessed with the Artificial Intelligence Kit soft-
ware (AK, GE Healthcare, China). Images were resampled 

(using Bspline as the default interpolator) and normal-
ized for subsequent radiomics analysis (using default val-
ues). Then, the preprocessed images were imported into 
the ITK-SNAP software (www. itksn ap. org) to manually 
segment the entire GC tissue layer by layer to obtain the 
volume of interest (VOI), which reflects the border best 
fitting the lesion’s area for each GC case. Two radiologists 
(QW. Z. and PP. Y.) independently repeated the segmenta-
tion process in 30 randomly selected patients a week later 
to analyze observer’s agreement. Finally, all VOIs were 
imported into the AK software for feature extraction.

Radiomics feature extraction and reduction
According to the obtained VOIs, 4 categories of features 
were determined, including first-order feature (voxel 
intensity distribution on CT images), shape feature (3D 
properties of the VOIs), texture feature (quantitation of 
region heterogeneity differences, e.g., gray-level co-occur-
rence, run length, size zone and neighborhood gray-tone 
difference matrices) and higher-order feature (transformed 
first-order data and texture features, including logarithm, 
exponential, gradient, square, square root, local binary 
pattern [LBP] and wavelet transformations) groups. Totally 
1218 radiomics features were obtained in every patient.

Inter- and intra-observer correlation coefficients (ICCs) 
were obtained for the assessment of feature robustness. 
Features with both inter- and intra-observer correlation 
coefficients above 0.9 were employed to build the model, 
with outstanding feature reproducibility. To select opti-
mal features associated with SOM, the least absolute 
shrinkage and selection operator (LASSO) algorithm was 
utilized (ten-fold cross-validation). The selected features 
were employed to develop a radscore.

Nomogram model building and validation
The predictive values of clinical features and the radscore in 
the detection of SOM were evaluated by univariable logis-
tic regression analysis in the training set (cohort 1). Factors 
showing p < 0.05 were then used to generate a visual nom-
ogram model by multiple factor logistic regression with 
the stepwise selection method (p < 0.05). The bootstrap 
method (1000 cross-validation) was performed to validate 
the precision of detection [25] as an internal validation tool 
in cohort 1. Receiver operating characteristic (ROC) curve 
analysis was carried out to assess the performances of the 
radscore, nomogram and subjective evaluation model. 
Then, the external validation data set (cohort 2) was used 
for verification. Finally, the models were compared by the 
DeLong test, and the nomogram’s goodness-of-fit was 
determined using the Hosmer–Lemeshow test. Decision 
curve analysis (DCA) and the confusion matrix were uti-
lized to validate clinical benefits. Figure 1 shows the study’s 
workflow.

http://www.itksnap.org
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Statistical Analysis
MedCalc 15.2.2 and Python 3.5 were utilized for data anal-
ysis. Categorical data were compared by the Pearson chi-
square test or Fisher’s exact test, whereas continuous data 
(mean ± standard deviation) were compared by the Stu-
dent’s t-test or Mann–Whitney U test. Two-sided P < 0.05 
was deemed to be statistically significant.

Results
Patient features
Totally 101 cases were finally enrolled in cohort 1 and 46 
patients were included in cohort 2. The two datasets had 
no marked differences in demographic characteristics (all 
P > 0.05), as shown in Table 1. According to pathological 
reports, 38/101 (37.6%) cases were SOM in cohort 1, ver-
sus 18/46 (39.1%) in cohort 2. Interobserver agreement 
for the subjective evaluation in both cohorts is shown in 
Supplemental Table 1.

Radiomics features and selection
After inter- and intra-observer agreement analyses, 
921/1218 (75.6%) features showed inter- and intra-
observer ICCs ≥ 0.9, and were used for radiomics analy-
sis. Eventually, two features were determined by the 
LASSO algorithm to be optimal (Supplemental Fig.  1), 
and a radscore was built as follows:

Radscore = 0.0122029783 ∗ (original_shape_Maximum3DDiameter)

+ 0.0002702978 ∗ (original_glrlm_ShortRunHighGrayLevelEmphasis).

Nomogram model construction and evaluation
In cohort 1, univariable analysis showed age, menstrual 
status, tumor location, CA125, CA125/CEA, CA724, 
CA19-9 and radscore were significantly associated with 
SOM. Next, a nomogram model was developed by mul-
tivariable logistic regression analysis of select risk fac-
tors (Age, OR = 0.884, p < 0.01; radscore, OR = 17.222, 
p = 0.001, Table 2 and Fig. 2A-B). The generated nomo-
gram, depicted in Fig. 2C, had a higher AUC than the 
radscore and subjective evaluation (0.910 vs 0.827 vs 
0.773) in the training set. The DeLong test revealed 
the differences were statistically significant (p = 0.007, 
p = 0.026). The bootstrap algorithm also showed a sat-
isfactory performance for SOM, with an AUC of 0.907 
in 1000 cross-validation, as an internal validation tool.

In cohort 2 (external validation set), the nomo-
gram model in combination with the radscore and age 
(details listed in Supplemental Table  2) had a higher 
AUC than the radscore and subjective evaluation (0.850 
vs 0.790 vs 0.675). The detailed ROC analyses and com-
parisons are shown in Table  3 and Fig.  3. Calibration 
curves for the nomogram in both datasets suggested 
no significant deviation (Hosmer–Lemeshow test, all 
P > 0.05) from an ideal fitting (Fig. 4).

In the external validation set, DCA showed that 
employing the novel nomogram to predict the 

Fig. 1 Study flowchart and modeling methods. Study flowchart (A) and modeling methods (B). Cohort 1, Changhai Hospital; Cohort 2, Ruijin 
Hospital Luwan
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probability of SOM conferred a positive net benefit 
compared to the radscore and the all-or-none scheme 
at a threshold probability from 10 to 75% (Fig. 5A). The 
confusion matrix confirmed the nomogram’s superiority 
over the radscore model (Fig. 5B-C).

Discussion
This work developed a radiomics nomogram using CT 
and clinical data, which showed markedly enhanced 
power versus the radscore and subjective evaluation in 
detecting SOM in female GC patients. Clinicians can 

Table 1 Clinicopathological parameters of the examined cohorts

U upper third of the stomach, M middle third of the stomach, L lower third of the stomach, SOM synchronous ovarian metastasis
a  Mean ± SD
b  Median (IQR)

Clinicopathological parameter Cohort 1 (n = 101) Cohort 2 (n = 46) P value

Menstrual status 0.343

postmenopause 48 (47.5%) 18 (39.1%)

premenopause 53 (52.5%) 28 (60.9%)

Age (years) a 49.762 ± 14.265 54.391 ± 11.174 0.054

Tumor location 0.317

U 20 (19.8%) 5 (10.9%)

M 41 (40.6%) 18 (39.1%)

L 40 (39.6%) 23 (50.0%)

CEA b 1.955 (1.110, 3.915) 2.120 (1.110, 3.930) 0.587

CA125 b 16.400 (10.300, 57.200) 16.050 (9.900, 54.300) 0.902

CA125/CEA b 8.389 (4.375, 23.694) 6.503 (2.899, 22.187) 0.939

CA724 b 3.640 (1.480, 7.782) 3.620 (1.580, 7.560) 0.923

CA19-9 b 12.830 (4.900, 70.752) 12.830 (7.130, 53.810) 0.770

Group 0.862

Without SOM 63 (62.4%) 28 (60.9%)

With SOM 38 (37.6%) 18 (39.1%)

Table 2 Regression analysis for model building

OR odds ratio, U upper third of the stomach, M middle third of the stomach, L lower third of the stomach
a stepwise regression

Negative (n = 63) Positive (n = 38) Univariable analysis Multivariable analysis a

OR (95% CI) P value OR (95% CI) P value

Menstrual status  < 0.001 / /

postmenopause 44(69.84) 4(10.53) 1 (reference) / /

premenopausa 19(30.16) 34(89.47) 19.684 (6.125, 63.258) / /

Age (years) 56.65 ± 11.99 38.34 ± 9.71 0.871 (0.826, 0.918)  < 0.001 0.884 (0.834, 0.937)  < 0.001

Tumor location 0.021 / /

      U 14(22.22) 6(15.79) 1 (reference) / /

      M 19(30.16) 22(57.89) 2.702(0.867, 8.417) / /

      L 30(47.62) 10(26.32) 0.778(0.236, 2.568) / /

    CEA 2.000 (0.980, 3.410) 1.960 (1.170, 4.480) 1.007 (0.996, 1.019) 0.644 / /

    CA125 13.000 (9.000, 21.050) 61.400 (16.400, 162.500) 1.005 (1.000, 1.010)  < 0.001 / /

    CA125/CEA 6.856 (4.151, 17.185) 14.775 (5.939, 64.194) 1.010 (0.999,1.021) 0.004 / /

    CA724 1.920 (1.117, 4.370) 5.170 (3.640, 56.350) 1.013 (1.003, 1.023)  < 0.001 / /

    CA19-9 9.390 (4.380, 34.715) 29.100 (12.830, 186.400) 1.001 (1.000, 1.002) 0.011 / /

    Radscore 0.586 ± 0.274 0.995 ± 0.286 32.310 (7.771, 134.334)  < 0.001 17.222 (3.028, 97.958) 0.001
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use this effective, noninvasive radiomics approach to 
improve the screening accuracy of SOM preoperatively 
and to design individuated treatments.

Detection of SOM in GC patients is important for clin-
ical decision-making. Ovarian metastasis (OM) reduces 
prognosis in female GC cases and often results in failed 
treatment [26]. Despite recent advances in diagnostic and 
therapeutic tools for GC, GC cases with OM still show 
unsatisfactory prognosis, with median survival time of 
less than 15  months [7]. When SOM is diagnosed, the 
GC case has stage IV disease (cM1), with poor progno-
sis. Such patients are not eligible for curative surgery, and 

the treatment strategy may mainly include systemic ther-
apy and chemoradiation, with the treatment goals being 
symptom relief and delayed progression. If a GC patient 
is diagnosed with primary ovary neoplasms, GC treat-
ment is not affected, and treatment of ovary neoplasms 
may be evaluated by an obstetrician-gynecologist.

Timely detection and precise evaluation of SOM is 
fundamental to optimal therapeutic decision-making. 
According to the NCCN guidelines for gastric cancer 
(version 2.2022) [2], pelvis imaging evaluation should 
be performed for newly diagnosed patients for a thor-
ough assessment. However, the imaging appearances of 

Fig. 2 Model building. Fitting curves for the radscore (A) and age (B) are shown. In the visual nomogram (C), first, a vertical line was drawn 
according to the values of the most influential factors to determine the corresponding numbers of points. The total points were the sum 
of the above points. Then, a vertical line was drawn according to the value of total points to determine the probability of risk
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ovarian metastasis and primary ovarian neoplasms may 
overlap, and the correct diagnosis can be challenging for 
radiologists [27]. Typically, ovarian metastases mostly 
occur in premenopausal women and present as bilateral 
masses. Peritoneal metastasis could also be observed in 
multiple patients simultaneously. These features as well 
as the medical history are key clues for the diagnosis of 
ovarian metastasis. However, in a retrospective study, Lin 
et al. [8] reported that 29.2% of ovarian metastases were 
unilateral and 31.5% showed no peritoneal metastasis. 
When presented atypically, OM might be misinterpreted 

as a primary ovarian neoplasm or even physiologic ovar-
ian enlargement. In a study by de Waal et al., about 25% 
of ovarian metastases mimicked a primary ovarian tumor 
[16]. Feng et  al. [15] reported that 6 of 63 patients had 
erroneous diagnosis as physiologic ovarian enlargement 
by imaging modalities and received no timely treatment.

Many studies have assessed the clinicopathological 
characteristics and prognostic factors of OM; however, 
imaging diagnosis of SOM sometimes remains chal-
lenging for radiologists. Routine imaging modalities, 
including CT, ultrasound and MRI, are unsatisfactory 

Table 3 ROC curve analysis and comparison of predictive values

AUC  area under the curve, PLR positive likelihood ratio, NLR negative likelihood ratio, NPV negative predictive value, PPV positive predictive value, NRI net 
reclassification index
* Compared with nomogram model

Training set (n = 101) External validation set (n = 46)

Nomogram Radscore Subjective evaluation Nomogram Radscore Subjective evaluation

AUC 0.910 0.827 0.773 0.850 0.790 0.675

95% CI 0.845–0.959 0.740–0.901 0.690–0.856 0.738–0.963 0.652–0.927 0.539–0.810

Specificity 0.794 0.714 0.730 0.821 0.821 0.571

Sensitivity 0.921 0.816 0.816 0.833 0.778 0.778

Accuracy 0.842 0.752 0.762 0.826 0.804 0.652

PLR 4.464 2.855 3.023 4.667 4.356 1.815

NLR 0.099 0.258 0.252 0.203 0.270 0.389

PPV 0.729 0.633 0.646 0.750 0.737 0.538

NPV 0.943 0.865 0.868 0.885 0.852 0.800

Delong test (P value) * / 0.007 0.026 / 0.186 0.047

NRI a / ‑0.185 ‑0.169 / ‑0.056 ‑0.306

Fig. 3 ROC curves in both data sets. A Training set. B External validation set
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in discriminating between primary and secondary 
ovary tumors. Because the traditional imaging features 
of SOM are non-specific and may lead to misdiagnosis, 
such evaluation is obviously a subjective process that 
lacks reliability. Therefore, the above facts highlight the 
urgent need to develop reliable tools to correctly iden-
tify GC cases with SOM and to improve prognosis.

Radiomics constitutes a new strategy using routine 
imaging findings to perform a high-throughput quan-
titative evaluation. This quantitative method provides a 
noninvasive tool for a more comprehensive assessment 
of the biological properties and heterogeneity of GC 
compared with morphological visual representation. It is 
widely admitted radiomics can be applied in GC evalua-
tion [19, 21, 23, 28–30]. However, radiomics is scarcely 
applied for detecting SOM in GC.

Importantly, this study relied on the application of radi-
omics features derived from primary lesions. Though the 
routine use of pelvic CT/MRI in clinic could help detect 
ovarian masses, the imaging features of ovarian metasta-
ses sometimes can be atypical and misleading. This prob-
lem is aggravated by the lack of consensus on appropriate 
morphological criteria to assess OM involvement accu-
rately. Compared to routine approaches, the radiomics 
approach is convenient, inexpensive, and free from risk 
of secondary inspection. The radiomics features extracted 
from primary tumor could directly predict the presence of 
SOM, no matter whether the ovarian region has benign 
lesions. Therefore, it could be utilized easily for identify-
ing low-risk patients who may not benefit from further 
radical imaging examination, such as PET/CT, which may 
reduce the radiation exposure and save expenses.

It is noteworthy that we built a nomogram combining 
age and CT-based radscore, which constitutes a visuali-
zation tool with improved discriminatory ability for SOM 
detection. A nomogram was generated to help radiolo-
gists and clinicians assess SOM more easily. This model 
showed favorable performance and better diagnostic 
efficiency than subjective evaluation and the radscore 
alone. The AUC improved from 0.675 to 0.850, with a 
pretty higher sensitivity and accuracy of 0.833 and 0.826 
in the validation cohort. Thus, the proposed nomogram 
could be clinically applied to promote risk stratification 
in patients with GC.

Another valuable aspect of the present work that an 
actual external validation cohort was examined. The 
external validation set in the current study revealed 
improved diagnostic performance and better clinical ben-
efit with the use of the novel nomogram. This indicates 
utilizing an external set may help overcome the short-
coming of overfitting for a newly built model. Therefore, 
the new model may assist radiologists in improving diag-
nostic confidence and provide clinicians with more useful 
and objective understanding of overall prognostic factors 
beforehand in the clinical setting.

This study had limitations. First, it had a small sample 
and a retrospective design, indicating potential selection 
bias and reduced data generalizability. Therefore, larger 
multicenter studies with external validation cohorts 
are needed to address these shortcomings. In addition, 
imaging segmentation was performed manually rather 
than semi-automatically or automatically, which may 
result in subjective errors not suitable for large data pro-
cessing. Compared to routine manual approach which 

Fig. 4 The calibration curves of the nomogram in both data sets. A Training set. B External validation set
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often insufficiently systematic and cumbersome proce-
dure, the deep learning-based automatic segmentation 
may thus help alleviate this burden and can effectively 
improve research reliability [31]. Additionally, imag-
ing segmentation was performed driven from primary 
GC. Although most methodologies advocate the use of 
volume of the whole primary tumor, only the radiom-
ics features of the primary tumor were extracted and 
analyzed, and the features of the OMs themselves were 
not explored, which may result in incomplete observa-
tion data. This point attracted a great attention both in 
theoretical and application fields. Furthermore, deep 
learning tools were not developed and validated for the 
detection of SOM or even peritoneal metastasis [32]. 
This application of artificial intelligence method could 
be used to guide personalized treatment plans with the 

help of computerized tumor-level characterization [33]. 
Finally, this study did not include relevant molecular 
biological indicators. “Radiogenomics” includes the radi-
omics and genomics features represents an emerging 
prognostic approach [34], which should be addressed in 
future studies.

Conclusions
In conclusion, using preoperative CT images, a quantita-
tive radscore was built to determine the risk of SOM in 
GC patients. Then, a nomogram model combining the 
radscore and clinical characteristics could be applied to 
improve the clinical benefit versus the subjective evalua-
tion and the radscore alone. This visual noninvasive nom-
ogram approach could be clinically applied to promote 
risk stratification in GC.

Fig. 5 Model validation. A DCA in the external validation set. Light‑ and dark‑grey lines represent the assumptions that all and no cases have a high 
risk, respectively. Red and blue curves showed that with a large probability range, utilizing the developed nomogram to predict the odds of SOM 
conferred a positive net benefit versus the radscore and the all‑or‑none scheme. The confusion matrix showed that using the nomogram model (C) 
would be more beneficial than applying the radscore alone (B)
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