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Abstract
Background There is no consensus on 3-dimensional (3D) quantification method for solid component within 
part-solid nodules (PSNs). This study aimed to find the optimal attenuation threshold for the 3D solid component 
proportion in low-dose computed tomography (LDCT), namely the consolidation/tumor ratio of volume (CTRV), 
basing on its correlation with the malignant grade of nonmucinous pulmonary adenocarcinomas (PAs) according 
to the 5th edition of World Health Organization classification. Then we tested the ability of CTRV to predict high-risk 
nonmucinous PAs in PSNs, and compare its performance with 2-dimensional (2D) measures and semantic features.

Methods A total of 313 consecutive patients with 326 PSNs, who underwent LDCT within one month before 
surgery and were pathologically diagnosed with nonmucinous PAs, were retrospectively enrolled and were divided 
into training and testing cohorts according to scanners. The CTRV were automatically generated by setting a series 
of attenuation thresholds from − 400 to 50 HU with an interval of 50 HU. The Spearman’s correlation was used to 
evaluate the correlation between the malignant grade of nonmucinous PAs and semantic, 2D, and 3D features in 
the training cohort. The semantic, 2D, and 3D models to predict high-risk nonmucinous PAs were constructed using 
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Background
With the widespread use of low-dose computed tomog-
raphy (LDCT) in lung cancer screening, the detection of 
subsolid nodules is escalating. Most pathologically con-
firmed subsolid nodules are nonmucinous pulmonary 
adenocarcinomas (PAs) [1, 2]. which are divided into 
part-solid nodules (PSNs) and pure ground-glass nod-
ules (PGGNs) on computed tomography (CT) [3]. The 
ground-glass opacity and solid component within PSNs 
tend to respectively correspond to lepidic and other 
invasive patterns in pathology, but this correlation is not 
absolute [4], resulting in no consensus on how to define 
and quantify the solid component of these lesions.

Previous clinical trials proposed a manual and 
2-dimentional (2D) measure, consolidation-to-tumor 
ratio (CTR), to quantify the solid component, and it 
was employed to guide the mode of surgical resection 
[5–7]. It was also demonstrated that a higher CTR was 
associated with a poor prognosis in early-stage PAs [8, 
9]. However, accurate and reproducible recognition and 
measurement of the solid component is challenging due 
to inter- and intra-observer variability using the subjec-
tive criterion [10, 11]. To eliminate the variability, many 
researchers have attempted to use objective, computer-
aided, and 3-dimensional (3D) method instead of sub-
jective, manual, and 2D method to measure the solid 
component. But the attenuation threshold for solid com-
ponent was inconsistent, ranging from − 350 HU to -50 
HU [12–15].

In the updated World Health Organization (WHO) 
classification of thoracic tumors, nonmucinous PA is 
classified into minimally invasive adenocarcinoma (MIA) 
and invasive PA (IPA), and IPA is further classified into 
well, moderately, and poorly differentiated IPA basing 
on the predominant and high-grade patterns [16]. This 
novel grading system for IPA offers a superior prognostic 
stratification compared with the previous classification 
system [17–20]. Specifically, MIA and well differenti-
ated IPA (Grade 1), with lepidic predominant pattern and 
no or less than 20% of high-grade pattern, have a 5-year 

recurrence-free survival (RFS) rate of nearly 100%, while 
the moderately (Grade 2) to poorly (Grade 3) differenti-
ated IPA have a 5-year RFS rate of 82.6–22.0%. Besides, 
high-grade IPAs could benefit from adjuvant treatment 
after surgical resection [21], such as chemotherapy, tar-
geted therapy, and immunotherapy [22–25]. Thus preop-
eratively stratifying the malignant grade of nonmucinous 
PAs might guide the selection of personalized therapy. 
Until now, there are rare studies about the association 
between the solid component size within PSNs and the 
novel grading system. Besides, all previous studies used 
standard-dose CT rather than LDCT data [12–15], and 
thus the optimal attenuation threshold that could be used 
in lung cancer screening remained unaddressed.

Here we hypothesize that the 3D solid component pro-
portion, namely the consolidation/tumor ratio of volume 
(CTRV), is associated with the malignant grade of non-
mucinous PAs and can help stratify the risk of PSNs in 
lung cancer screening. Therefore, this study firstly aimed 
to find the optimal attenuation threshold for CTRV in 
LDCT basing on the correlation between the CTRV and 
the malignant grade of nonmucinous PAs. Secondly, we 
tested the ability of CTRV to distinguish between low-
risk (MIA/Grade 1 IPA) and high-risk (Grade 2/3 IPA) 
nonmucinous PAs in PSNs, and compare its performance 
with 2D measures and semantic features.

Methods
Patients
This retrospective study was approved by the Institu-
tional Review Board of Sichuan Cancer Hospital, and 
the need to obtain informed consent was waived. A total 
of 313 consecutive patients with 326 PSNs between 
November 2018 and May 2022 were enrolled in our 
institution. The inclusion criteria were: (a) patients with 
PSNs detected by LDCT in lung cancer screening; (b) 
first treatment with surgical resection; (c) pathologically 
diagnosed with nonmucinous PAs. The exclusion crite-
ria were: (a) PGGNs or solid nodules; (b) patients who 
underwent LDCT scan over one month before surgery; 

multivariable logistic regression and validated in the testing cohort. The diagnostic performance of these models was 
evaluated by the area under curve (AUC) of receiver operating characteristic curve.

Results The CTRV at attenuation threshold of -250 HU (CTRV− 250HU) showed the highest correlation coefficient 
among all attenuation thresholds (r = 0.655, P < 0.001), which was significantly higher than semantic, 2D, and other 
3D features (all P < 0.001). The AUCs of CTRV− 250HU to predict high-risk nonmucinous PAs were 0.890 (0.843–0.927) in 
the training cohort and 0.832 (0.737–0.904) in the testing cohort, which outperformed 2D and semantic models (all 
P < 0.05).

Conclusions The optimal attenuation threshold was − 250 HU for solid component volumetry in LDCT, and the 
derived CTRV− 250HU might be valuable for the risk stratification and management of PSNs in lung cancer screening.
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tomography



Page 3 of 11Liu et al. Cancer Imaging           (2023) 23:65 

(c) pathologically diagnosed with precursor glandular 
lesions, or variants of adenocarcinomas; (d) inadequate 
image quality due to respiratory and movement artifacts.

The whole sample of PSNs was divided into training 
and testing cohorts according to scanners. The training 
cohort (n = 239; MIA = 15; Grade 1 = 62; Grade 2 = 151; 
Grade 3 = 11) was used to determine the optimal attenu-
ation threshold and construct the predicting models, 
whose generalization abilities were validated by the test-
ing cohort (n = 87; MIA = 9; Grade 1 = 19; Grade 2 = 52; 
Grade 3 = 7).

Acquisition parameters
The training cohort were obtained with a 64-detector 
dual-source CT scanner (Somatom Definition Flash, Sie-
mens Healthcare) using the following acquisition param-
eters: tube voltage, 100 kV; tube current, 10 to 30 mAs; 
pitch, 1; collimation, 64 × 0.6  mm; rotation time, 0.33s; 
field of view, 350 mm × 350 mm. Then the images were 
reconstructed using the hybrid iterative reconstruction 
method (SAFIRE, Strength level 5) with soft reconstruc-
tion kernel (I30f ), slice thickness of 0.5 mm, no gap, and 
matrix of 512 × 512. The estimated effective dose was 
0.55 ± 0.11 mSv, and the mean interval between LDCT 
and surgery was 6.6 ± 5.2 days in the training cohort.

The testing cohort were obtained with a 128-detector 
CT scanner (Brilliance iCT, Philips Healthcare) using the 
following acquisition parameters: tube voltage, 100  kV; 
tube current, 20 to 30 mAs; pitch, 0.915; collimation, 
128 × 0.625 mm; rotation time, 0.4s; field of view, 350 mm 
× 350  mm. Then the images were reconstructed using 
the hybrid iterative reconstruction method (iDose4, level 
6) with soft reconstruction kernel (B), slice thickness of 
0.625 mm, no gap, and matrix of 512 × 512. The estimated 
effective dose was 0.66 ± 0.12 mSv, and the mean interval 
between LDCT and surgery was 6.9 ± 5.4 days in the test-
ing cohort.

Histopathologic evaluation
The pathological diagnosis of nonmucinous PA was 
obtained according to the 5th edition of WHO classifica-
tion of thoracic tumors [16]. The nonmucinous MIA was 
defined as a tumor of ≤ 3  cm with lepidic predominant 
growth and ≤ 5  mm of stromal invasion, no lymphatic, 
vascular or pleural invasion, and no tumor necrosis. The 
nonmucinous IPA was classified into three grades: well 
differentiated (Grade 1), lepidic predominant tumor, with 
no or less than 20% of high-grade pattern; moderately 
differentiated (Grade 2), acinar or papillary predomi-
nant pattern with no or less than 20% of high-grade pat-
tern; poorly differentiated (Grade 3), any tumor with 20% 
or more of high-grade pattern. The high-grade pattern 
included micropapillary, solid, cribriform, and complex 
glandular patterns. The percentage of each histological 

pattern was recorded in 5% increments. In the second-
ary aim of this study, we divided nonmucinous PAs into 
low-risk group (MIA and Grade 1 IPA) and high-risk 
group (Grade 2/3 IPA) according to the distinct progno-
sis [17–20].

Semantic features and 2D measures
Two radiologists (JL and HQ, with 6 years and 11 years of 
experience) who were blinded to histopathological diag-
nosis evaluated the semantic features and 2D measures of 
PSNs on LDCT images.

The semantic features included shape, margin, lobula-
tion, spiculation, pleural indentation, air bronchogram, 
vacuole sign, and vascular convergence sign. The cases of 
disagreement between the two radiologists were resolved 
by consulting a third radiologist with 26 years of experi-
ence (PZ).

The 2D measures included the maximal diameter of 
nodule and CTR. The measurement of diameter followed 
the Fleischner Society guideline [3]. The CTR was defined 
as the ratio of the maximum diameter of solid compo-
nent to the maximal diameter of nodule, which was in 
accordance with the definition of previous clinical trial 
[7]. The intra-class correlation coefficient (ICC) was used 
to evaluate the consistency of the 2D measures between 
two observers. ICC > 0.8 indicated a high agreement.

3D measures
The uAI platform (United Imaging Healthcare), an arti-
ficial intelligence (AI) software based on the deep learn-
ing method [26, 27], was used to automatically detect and 
segment pulmonary nodules in 3D. This software could 
be integrated into radiological diagnosis workflow by 
connecting with the picture archiving and communica-
tion system (PACS). It had been proved with satisfactory 
segmentation results in our previous studies [28–30]. 
To avoid inter- and intra-observer variability, no manual 
adjustment was conducted. The 3D measures including 
volume and mean attenuation were then automatically 
extracted by the AI software.

After segmentation, a series of attenuation thresholds 
were set to conduct greyscale discretization, ranging 
from − 400 to 50 HU with an interval of 50 HU, which 
had been validated in a previous study [15]. The voxel 
volume beyond each attenuation threshold was automati-
cally generated and recorded. The CTRV was defined as 
the ratio of the volume of solid component to the volume 
of nodule. The 2D and 3D quantification strategy of solid 
component within a representative PSN was shown in 
Fig. 1.

Statistical analysis
Statistical analyses were performed with SPSS soft-
ware (version 25.0; https://www.ibm.com) and Medcalc 

https://www.ibm.com
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(version 18.2.1; https://www.medcalc.org/). The group 
differences were compared through Kruskal-Wallis test 
or Mann-Whitney U test for continuous variables, and 
Fisher’s exact test for categorical variables. The Spear-
man’s correlation was used to evaluate the association 
between the malignant grade of nonmucinous PAs and 
semantic features, 2D measures, and 3D measures. The 
attenuation threshold that showed the highest correlation 

coefficient between the malignant grade of nonmucinous 
PAs and the CTRV was selected as the optimal value for 
solid component volumetry. Statistical tests of differences 
between correlation coefficients were performed using 
the Fisher’s Z-transform method. A two-side P < 0.05 was 
considered statistically significant.

Fig. 1 The quantification strategy of solid component within a representative part-solid nodule. A 56-year-old male patient with nonmucinous invasive 
pulmonary adenocarcinoma (Grade 2) in right upper lobe. A, Lung window setting reveals a part-solid nodule. B, Manual and 2-dimensional measure-
ment of consolidation/tumor ratio (CTR) basing on the maximal diameters of nodule and solid component. C, Automatic segmentation and greyscale 
discretization of nodule (attenuation threshold ranges from − 400 to 50 HU, step = 50 HU). D, 3-dimensional histogram and measurement of consolida-
tion/tumor ratio of volume (CTRV) at attenuation threshold of -250 HU basing on the volumes of nodule and solid component
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Model construction and validation
We intended to construct three models, including 
semantic, 2D, and 3D models, to differentiate low-risk 
(MIA/Grade 1 IPA) from high-risk (Grade 2/3 IPA) non-
mucinous PAs in PSNs. The potential predicting factors 
were firstly identified by group comparisons with statis-
tical significance in the training cohort. Then, multivari-
able logistic regressions with backward stepwise selection 
were performed to constructed models by inputting these 
potential predicting factors in the training cohort. Finally, 
these models were validated in the testing cohort.

The area under curve (AUC) of receiver operating 
characteristic (ROC) curve was used to evaluate the 
performance of models. The optimal cut-off value was 
determined by Youden’s index and the corresponding 
sensitivity and specificity were calculated from the con-
fusion matrix. The binomial exact method was used to 
estimate the 95% confidence intervals (CI). The compari-
sons of AUCs in the training and testing cohorts were 
performed using the Delong test [31]. The Hosmer-Lem-
eshow test was performed to evaluate the goodness-of-fit 
of models.

This study followed the transparent reporting of a mul-
tivariable prediction model for individual prognosis or 
diagnosis (TRIPOD) statement [32], and we concluded 
that the type of this study was type 2b.

Results
Demographic characteristics
The clinical and radiological characteristics of the train-
ing cohort in terms of the malignant grade of nonmu-
cinous PAs were summarized in the Table  1. The age 
showed significant difference among the different malig-
nant grade of nonmucinous PAs (P < 0.001). There was 
no significant difference in gender (P = 0.563). No signifi-
cant correlation with the malignant grade of nonmuci-
nous PAs was found in age (r = 0.009, P = 0.894) or gender 
(r = 0.088, P = 0.174).

The clinical and radiological characteristics of the train-
ing and testing cohorts in terms of the low-risk and high-
risk nonmucinous PAs were summarized in the Table 2. 
No significant difference was found in the gender or age 
in the training cohort or testing cohort (all P > 0.05).

Semantic features
The lobulation, pleural indentation, air bronchogram, 
and vascular convergence sign showed significant differ-
ence among the different malignant grade of nonmuci-
nous PAs (all P < 0.001), and significantly correlated with 
the malignant grade of nonmucinous PAs (r ranged from 
0.262 to 0.393, all P < 0.001). No significant difference 
was found in the shape, margin, spiculation, or vacuole 
sign (all P > 0.05), and there is also no significant corre-
lation with the malignant grade of nonmucinous PAs for 

these semantic features (r ranged from 0.005 to 0.115, all 
P > 0.05) (Table 1).

In the comparisons between the low-risk and high-risk 
nonmucinous PA groups, the pleural indentation and 
vascular convergence sign showed significant difference 
in both the training and testing (all P < 0.05) cohorts. 
The lobulation and air bronchogram showed significant 
difference in the training cohort (both P < 0.001), but no 
significant difference in the testing cohort (both P > 0.05). 
No significant difference was found in the shape, margin, 
spiculation, or vacuole sign in the training cohort or test-
ing cohort (all P > 0.05) (Table 2).

2-dimensional measures
The ICC was 0.949 (0.938–0.959) for the maximal diame-
ter and 0.940 (0.926–0.952) for the CTR in the combined 
training and testing cohorts, indicating a high agreement 
between the two radiologists. Then averages of the two 
radiologists were calculated for the following analysis.

The maximal diameter and CTR showed significant dif-
ference among the different malignant grade of nonmu-
cinous PAs (both P < 0.001), and significantly correlated 
with the malignant grade of nonmucinous PAs (r = 0.366 
and 0.456, both P < 0.001) (Table 1).

The high-risk nonmucinous PA group showed signifi-
cantly higher maximal diameter and CTR than the low-
risk group in both the training and testing (all P ≤ 0.001) 
(Table 2).

3-dimentinal measures
The volume, mean attenuation, and CTRVs at all attenu-
ation thresholds showed significant difference among 
the different malignant grade of nonmucinous PAs (all 
P < 0.001), and significantly correlated with the malignant 
grade of nonmucinous PAs (r ranged from 0.580 to 0.655, 
all P < 0.001) (Table 1).

The CTRV at attenuation threshold of -250 HU 
(CTRV− 250HU) showed the highest correlation coeffi-
cient (r = 0.655) among all attenuation thresholds, which 
was also significantly higher than that of lobulation, 
pleural indentation, air bronchogram, vascular conver-
gence sign, maximal diameter, CTR, volume, and mean 
attenuation (Z ranged from 3.290 to 6.676, all P < 0.001). 
Therefore, the attenuation of -250 HU was selected as the 
optimal threshold for solid component volumetry, and 
CTRV− 250HU was used for the following analysis.

The high-risk nonmucinous PA group showed sig-
nificantly higher volume, mean attenuation, and 
CTRV− 250HU than the low-risk group in both the training 
and testing (both P < 0.001) (Table 2).

Model construction
According to the group comparison results in the 
training cohort, the potential predicting factors for 
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differentiating low-risk from high-risk nonmucinous 
PAs included four semantic features (lobulation, pleural 
indentation, air bronchogram, and vascular convergence 
sign), two 2D measures (maximal diameter and CTR), 
and three 3D measures (volume, mean attenuation, and 
CTRV− 250HU). Then, these factors were integrated to 

construct semantic, 2D, and 3D models using multivari-
able logistic regressions.

Among four semantic features, vascular convergence 
sign was eliminated from the final model after back-
ward stepwise selection (Table  3), and thus the calcu-
lation formula for semantic model was: ln [P/(1 − P)] = 

Table 1 Characteristics of nonmucinous pulmonary adenocarcinomas that manifesting as part-solid nodules in the training cohort
Characteristic MIA (n = 15) IPA (n = 224) P1

a r P2
b

Grade 1 
(n = 62)

Grade 2 
(n = 151)

Grade 3 
(n = 11)

Gender 0.563 0.009 0.894

Male 4 24 48 5

Female 11 38 103 6

Age 47.5 ± 11.0 60.8 ± 9.3 58.5 ± 11.4 65.1 ± 10.8 < 0.001 0.088 0.174

Shape 0.999 0.007 0.917

Round/oval 0 2 4 0

Irregular 15 60 147 11

Margin 0.999 0.005 0.941

Smooth 0 1 2 0

Coarse 15 61 149 11

Lobulation < 0.001 0.393 < 0.001

No 1 38 17 0

Yes 14 24 134 11

Spiculation 0.172 0.115 0.077

No 15 62 149 10

Yes 0 0 2 1

Pleural indentation < 0.001 0.327 < 0.001

No 14 33 49 1

Yes 1 29 102 10

Air bronchogram < 0.001 0.330 < 0.001

No 15 48 71 5

Yes 0 14 80 6

Vacuole 0.258 0.071 0.277

No 14 60 135 11

Yes 1 2 16 0

Vessel convergence < 0.001 0.262 < 0.001

No 15 44 73 6

Yes 0 18 78 5

Maximal diameter (mm) 10.1 ± 2.5 17.6 ± 6.4 20.5 ± 7.0 24.0 ± 6.6 < 0.001 0.366 < 0.001

CTR (%) 38.6 ± 10.6 38.9 ± 13.1 53.4 ± 15.8 64.1 ± 14.1 < 0.001 0.456 < 0.001

Volume (mm3) 363.8 ± 266.0 2051.1 ± 2019.0 2770.3 ± 2305.2 3526.0 ± 2096.0 < 0.001 0.361 < 0.001

Mean attenuation (HU) -598.3 ± 70.1 -578.5 ± 90.3 -426 ± 118.5 -331.4 ± 55 < 0.001 0.609 < 0.001

CTRV− 400HU (%) 11.6 ± 7.6 17.5 ± 13.1 42.9 ± 19.6 57.5 ± 8.9 < 0.001 0.636 < 0.001

CTRV− 350HU (%) 8.0 ± 5.6 13.5 ± 11.1 37.0 ± 18.9 51.7 ± 9.3 < 0.001 0.641 < 0.001

CTRV− 300HU (%) 5.2 ± 4.1 10.1 ± 9.2 31.5 ± 18.0 46.1 ± 9.5 < 0.001 0.650 < 0.001

CTRV− 250HU (%) 3.4 ± 2.9 7.5 ± 7.6 26.5 ± 16.7 40.6 ± 9.7 < 0.001 0.655 < 0.001

CTRV− 200HU (%) 1.8 ± 1.8 5.4 ± 6.1 21.8 ± 15.4 35 ± 9.8 < 0.001 0.654 < 0.001

CTRV− 150HU (%) 0.7 ± 1.2 3.7 ± 4.8 17.5 ± 13.9 29.5 ± 10.0 < 0.001 0.654 < 0.001

CTRV− 100HU (%) 0.3 ± 0.7 2.5 ± 3.6 13.6 ± 12.2 24.0 ± 10.4 < 0.001 0.647 < 0.001

CTRV− 50HU (%) 0.1 ± 0.2 1.4 ± 2.5 9.9 ± 10.4 18.7 ± 10.6 < 0.001 0.632 < 0.001

CTRV0HU (%) 0.0 ± 0.0 0.7 ± 1.4 6.4 ± 8.1 13.0 ± 9.5 < 0.001 0.611 < 0.001

CTRV50HU (%) 0.0 ± 0.0 0.2 ± 0.6 2.6 ± 4.1 5.6 ± 5.4 < 0.001 0.580 < 0.001
a The group comparisons among different malignant grade of nonmucinous pulmonary adenocarcinomas. b The Spearman’s correlation analyses between 
characteristics and malignant grade of nonmucinous pulmonary adenocarcinomas. MIA, minimally invasive adenocarcinoma; IPA, invasive pulmonary 
adenocarcinoma; CTR, consolidation-to-tumor ratio; HU, Hounsfield unit; CTRV, consolidation/tumor ratio of volume
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-1.580 + 1.817 × lobulation (yes) + 0.980 × pleural inden-
tation (yes) + 1.424 × air bronchogram (yes), where P is 
the probability of high-risk nonmucinous PAs (cut-off 
> 0.627).

For 2D model, both maximal diameter and CTR were 
retained in the final model after backward stepwise 
selection (Table 3), and thus the calculation formula for 
2D model was: ln [P/(1 − P)] = -5.061 + 0.120 × maximal 
diameter + 0.079 × CTR, where P is the probability of 
high-risk nonmucinous PAs (cut-off > 0.676).

For 3D model, volume and mean attenuation were 
eliminated from the final model after backward stepwise 
selection, and thus only CTRV− 250HU was retained in 3D 
model (Table 3). In order to conveniently use this index, 
there was no need to fit logistic function. The cut-off of 

CTRV− 250HU for the high-risk nonmucinous PAs was 
8.6%.

Model performance
The ROC curves of semantic model, 2D model, and 
CTRV− 250HU in the training and testing cohorts were 
shown in Fig.  2. The AUCs of semantic model, 2D 
model, and CTRV− 250HU were 0.809 (0.753–0.856), 0.821 
(0.767–0.868), and 0.890 (0.843–0.927) in the training 
cohort, and 0.710 (0.603–0.802), 0.760 (0.656–0.845), and 
0.832 (0.737–0.904) in the testing cohort, respectively. 
The detailed sensitivity and specificity were present in 
Table 4.

According to the DeLong test, the AUC of CTRV− 250HU 
was significantly higher than that of semantic model and 
2D model in the training cohort (P = 0.006 and 0.002) as 

Table 2 Characteristics of low-risk and high-risk nonmucinous pulmonary adenocarcinomas that manifesting as part-solid nodules in 
the training and testing cohorts
Characteristic Training cohort P Testing cohort P

Low-risk (n = 77) High-risk (n = 162) Low-risk (n = 28) High-risk (n = 59)
Gender 0.661 0.487

Male 28 53 10 27

Female 49 109 18 32

Age 58.2 ± 10.9 59.0 ± 11.4 0.718 59.1 ± 10.6 58.2 ± 11.9 0.696

Shape 0.999 0.264

Round/oval 2 4 4 4

Irregular 75 158 24 55

Margin 0.999 0.591

Smooth 1 2 2 2

Coarse 76 160 28 57

Lobulation < 0.001 0.074

No 39 17 12 13

Yes 38 145 16 46

Spiculation 0.553 0.548

No 77 159 28 56

Yes 0 3 0 3

Pleural indentation < 0.001 0.036

No 47 50 16 19

Yes 30 112 12 40

Air bronchogram < 0.001 0.051

No 63 76 23 35

Yes 14 86 5 24

Vacuole 0.130 0.999

No 74 146 23 48

Yes 3 16 5 11

Vessel convergence < 0.001 0.036

No 59 79 25 40

Yes 18 83 3 19

Maximal diameter (mm) 16.1 ± 6.5 20.8 ± 7.0 < 0.001 15.3 ± 6.7 21.2 ± 6.3 < 0.001

CTR (%) 38.9 ± 12.6 54.1 ± 15.9 < 0.001 42.6 ± 14.3 57.7 ± 20.8 0.001

Volume (mm3) 1722.4 ± 1933.2 2821.6 ± 2293.5 < 0.001 1453.8 ± 1456.3 3217.4 ± 2585.6 < 0.001

Mean attenuation (HU) -582.4 ± 86.7 -419.6 ± 117.6 < 0.001 -547.8 ± 91.8 -416.8 ± 124.8 < 0.001

CTRV− 250HU (%) 6.7 ± 7.1 27.4 ± 16.7 < 0.001 8.7 ± 9.4 27.6 ± 17.3 < 0.001
CTR, consolidation-to-tumor ratio; HU, Hounsfield unit; CTRV, consolidation/tumor ratio of volume
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well as in the testing cohort (P = 0.047 and 0.035). The 
Hosmer-Lemeshow test yielded non-significant results in 
both the training and testing cohorts of semantic model 
(P = 0.451 and 0.075), 2D model (P = 0.662 and 0.316), and 
CTRV− 250HU (P = 0.410 and 0.184), which suggested no 
departure from the perfect fit.

Discussion
In this study, we demonstrated that the 3D solid compo-
nent proportion, namely the CTRV, was associated with 
the malignant grade of nonmucinous PAs in PSNs, and 
the optimal attenuation was − 250 HU for solid com-
ponent volumetry in LDCT. Besides, the CTRV− 250HU 
showed higher correlation with the malignant grade 

Table 3 Multivariable logistic regressions of selected features for 
differentiating low-risk from high-risk nonmucinous pulmonary 
adenocarcinomas in the training cohort
Models Odds 

ratio
95% 
confidence 
interval

P

Semantic Lobulation < 0.001

No a 1

Yes 6.153 3.028–12.505

Pleural 
indentation

0.003

No a 1

Yes 2.655 1.400–5.075

Air 
bronchogram

< 0.001

No a 1

Yes 4.153 2.012–8.575

2-dimensional Maximal 
diameter

1.128 1.069–1.190 < 0.001

CTR 1.082 1.055–1.110 < 0.001

CTRV− 250HU CTRV− 250HU 1.176 1.123–1.231 < 0.001
a Features were set as reference. CTR, consolidation-to-tumor ratio; CTRV, 
consolidation/tumor ratio of volume

Table 4 Diagnostic performance of models in the training and 
testing cohorts
Models AUC (95% 

CI)
Sensitivity 
(95% CI)

Specificity 
(95% CI)

Z Pa

Training cohort

Semantic 0.809 
(0.753–
0.856)

0.784 
(0.713–
0.845)

0.753 
(0.642–
0.844)

2.755 0.006

2-dimensional 0.821 
(0.767–
0.868)

0.728 
(0.653–
0.795)

0.818 
(0.714–
0.897)

3.097 0.002

CTRV− 250HU 0.890 
(0.843–
0.927)

0.870 
(0.809–
0.918)

0.792 
(0.685–
0.876)

- -

Testing cohort

Semantic 0.710 
(0.603–
0.802)

0.763 
(0.634–
0.864)

0.714 
(0.513–
0.868)

1.990 0.047

2-dimensional 0.760 
(0.656–
0.845)

0.661 
(0.526–
0.779)

0.750 
(0.551–
0.893)

2.108 0.035

CTRV− 250HU 0.832 
(0.737–
0.904)

0.847 
(0.730–
0.928)

0.786 
(0.590–
0.917)

- -

a Comparison of AUC with 3-dimensional model. AUC, area under curve; CI, 
confidence interval

Fig. 2 The receiver operating characteristic curves of semantic model, 2-dimensional model, and CTRV− 250HU for differentiation between low-risk and 
high-risk nonmucinous pulmonary adenocarcinomas in part-solid nodules. A, Training cohort. B, Testing cohort
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of nonmucinous PAs and better performance to pre-
dict high-risk nonmucinous PAs than 2D measures and 
semantic features in PSNs.

As the solid component was an indicator of invasiveness 
[33–35] and also correlated with the non-leipidic invasive 
component size at pathological examinations [36, 37], 
the guidelines of lung cancer screening recommended to 
manage PSNs on the basis of the solid component diam-
eter on CT [3, 38, 39]. However, the inter-observer vari-
ability in measuring the diameter of pulmonary nodule 
could not be neglected, especially in the presence of a 
solid component [10, 11]. Besides, the current morpho-
logic criteria for defining solid component had limited 
operability in lung cancer screening. According to the 
Fleischner recommendations, nodule components other 
than normal vascular or bronchial structures remained 
visible on thin sections with mediastinal (soft tissue) 
window settings and sharp filters were regarded as solid 
components [3]. But LDCT images were usually acquired 
by using smooth reconstruction kernels to improve the 
signal-to-noise ratio because the sharp kernels substan-
tially increase image noise with negative effects on detail 
visibility [10]. Another method to determine the pres-
ence of solid component based on whether the maxi-
mum CT value of the subsolid nodule was higher than 
that of the vessel [15]. But it could not accurately define 
the margin and size of solid component. The automatic 
quantification method in our study, with adequate objec-
tivity, might address the question that how to measure 
solid component volume in PSNs during lung cancer 
screening.

Many efforts had been triggered to measure solid com-
ponent through 3D and automatic methods beyond 2D 
and manual methods. Our optimal attenuation thresh-
old was − 250 HU, which was inconsistent with previous 
studies [12–15]. There were several possible reasons. The 
first was the using of different pathological standards to 
select the optimal threshold, such as the size of invasive 
component under light microscopy [13] and the ability 
to differentiate invasive from noninvasive PAs [14, 15]. 
The second possible reason might be the using of differ-
ent threshold selection methods. The computer-based 
automatic thresholding and CT visual appearance-based 
thresholding methods might be short of biological basis 
and objectivity to some extent, respectively [12, 14]. Here 
we used the correlation between the 3D solid compo-
nent proportion deriving from objective and automatic 
method and the malignant grade of nonmucinous PAs 
basing on the novel edition of WHO classification [16]. 
Thirdly, it was known that the reconstruction kernel and 
radiation dose significantly affected quantification of CT 
attenuation [40–43]. But there was the heterogeneity in 
these acquisition parameters among previous and our 
works. All the previous studies used standard-dose CT 

rather than LDCT. Besides, some images were recon-
structed with sharp kernel [12, 13], while some were 
smooth kernel [14, 15].

Previous study found the volume had better ability to 
reflect the 3D nature of pulmonary nodules than diame-
ter, as it allowed the calculation of volume doubling time 
to more reliably define the nodule growth and reduced 
subjective inconsistency among observers [44]. The Lung 
CT Screening Reporting & Data System (Lung-RADS, 
version 1.1) was also updated in 2019 to include vol-
ume in management of pulmonary nodules [38]. How-
ever, the solid component volume has not been included 
in any guideline or recommendation to manage PSNs, 
because there is still no consensus about the appropri-
ate 3D quantification method for solid component. The 
CTRV− 250HU in our study, a 3D measure of solid compo-
nent proportion that showed higher correlation with the 
malignant grade of nonmucinous PAs and better perfor-
mance to predict high-risk nonmucinous PAs than 2D 
measures, might be valuable for the risk stratification and 
management of PSNs in lung cancer screening.

Several morphologic features constituted the semantic 
model, including lobulation, pleural indentation, and air 
bronchogram, which were more common in the high-
risk nonmucinous PA group than in the low-risk group 
in PSNs. The lobulation was generally attributed to differ-
ent or uneven growth rates within nodules. The pleural 
indentation presented scar contraction caused by fibrotic 
hyperplasia, and active fibroblast proliferation was asso-
ciated with the invasive growth of tumors [45, 46]. The air 
bronchogram was a pattern of air-filled bronchi against 
a background of airless lung. All these morphologic fea-
tures were found to be related to invasiveness of PAs in 
PSNs [47–49]. However, in terms of predicting high-risk 
nonmucinous PAs in PSNs, the semantic model was infe-
rior to the CTRV− 250HU in our results.

In this study, we proposed a novel method that could be 
used to quantify solid component within PSNs in 3D dur-
ing lung cancer screening. The advantage of this method 
was the feasibility and applicability in LDCT images with 
satisfactory objectivity. However, the optimal attenuation 
threshold was generated by a certain cohort, but not in 
an individualized level. Therefore, further researches may 
focus on how to automatically define the optimal attenu-
ation threshold in a personalized manner. The developed 
deep learning-based AI tools, with excellent ability in 
detecting and segmenting pulmonary nodules at present 
[50], may have the potential to fill this gap. Recently, Ahn 
et al. found the deep learning algorithm could automati-
cally measure the maximal diameter of solid component 
in 2D [37]. The AI tool, basing on big data and standard-
ized 3D annotation of solid component, is needed to be 
developed and validated in the future.
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Our study had limitations. First, due to the inherent 
nature of the retrospective study, the potential selection 
bias was unavoidable. The sample size was also relatively 
limited. Thus further prospective and large-scale trial is 
required to confirm the predicting performance of our 
models. Second, this was a single-center study. However, 
a testing dataset from another scanner was used to vali-
date the proposed models, making them more convinc-
ing and reproducible. Third, the protocols of LDCT used 
in this study might not be applicable to other scanners 
and acquisition parameters. Therefore, further multi-cen-
ter study is still needed to validate the generalizability of 
our models.

Conclusions
This study indicated that the optimal attenuation thresh-
old was − 250 HU for solid component volumetry in 
LDCT. The derived CTRV− 250HU showed higher correla-
tion with the malignant grade of nonmucinous PAs and 
better performance to predict high-risk nonmucinous 
PAs than 2D measures and semantic features in LDCT, 
which might be valuable for the risk stratification and 
management of PSNs in lung cancer screening.
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