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Abstract
Background  CEUS LI-RADS (Contrast Enhanced Ultrasound Liver Imaging Reporting and Data System) has good 
diagnostic efficacy for differentiating hepatic carcinoma (HCC) from solid malignant tumors. However, it can be 
problematic in patients with both chronic hepatitis B and extrahepatic primary malignancy. We explored the 
diagnostic performance of LI-RADS criteria and CEUS-based machine learning (ML) models in such patients.

Methods  Consecutive patients with hepatitis and HCC or liver metastasis (LM) who were included in a multicenter 
liver cancer database between July 2017 and January 2022 were enrolled in this study. LI-RADS and enhancement 
features were assessed in a training cohort, and ML models were constructed using gradient boosting, random 
forest, and generalized linear models. The diagnostic performance of the ML models was compared with LI-RADS in a 
validation cohort of patients with both chronic hepatitis and extrahepatic malignancy.

Results  The mild washout time was adjusted to 54 s from 60 s, increasing accuracy from 76.8 to 79.4%. Through 
feature screening, washout type II, rim enhancement and unclear border were identified as the top three predictor 
variables. Using LI-RADS to differentiate HCC from LM, the sensitivity, specificity, and AUC were 68.2%, 88.6%, and 
0.784, respectively. In comparison, the random forest and generalized linear model both showed significantly higher 
sensitivity and accuracy than LI-RADS (0.83 vs. 0.784; all P < 0.001).

Conclusions  Compared with LI-RADS, the random forest and generalized linear model had higher accuracy for 
differentiating HCC from LM in patients with chronic hepatitis B and extrahepatic malignancy.

Comparison of machine learning models 
and CEUS LI-RADS in differentiation of hepatic 
carcinoma and liver metastases in patients 
at risk of both hepatitis and extrahepatic 
malignancy
Jianming Li1, Huarong Li2, Fan Xiao1, Ruiqi Liu3, Yixu Chen4, Menglong Xue5, Jie Yu1*† and Ping Liang1*†

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://orcid.org/0000-0001-8933-6392
http://crossmark.crossref.org/dialog/?doi=10.1186/s40644-023-00573-8&domain=pdf&date_stamp=2023-6-15


Page 2 of 12Li et al. Cancer Imaging           (2023) 23:63 

Background
Hepatocellular carcinoma (HCC) is the sixth most com-
mon type of solid malignant tumor, with the liver also 
being the most common site of metastasis (70–97%) for 
extrahepatic tumors [1]. Accurate preoperative differ-
entiation of liver metastasis (LM) from HCC using non-
invasive tools is essential for deciding on management 
protocols, which include hepatectomy, liver transplanta-
tion, and systemic treatment [2–4]. Immune checkpoint 
inhibitors have been shown to be affective treatment 
options and have been approved for advanced HCC [5, 
6]; however, systemic treatment of metastatic carcinoma 
needs to be determined according to the nature of the 
primary lesion [7]. For patients with both hepatic and 
extrahepatic malignancy, systemic treatment should be 
defined according to the primary or metastatic liver can-
cer. Sawatzki et al. demonstrated that contrast-enhanced 
ultrasound (CEUS) coupled with dynamic real-time 
imaging could provide higher temporal resolution and 
detect an additional 4% of LMs compared with conven-
tional contrast-enhanced MRI [8].

The CEUS Liver Imaging Reporting and Data System 
(LI-RADS, 2017 version) was proposed as a standard-
ized algorithm to diagnose liver cancer in patients at high 
risk because of disease such as hepatitis [9]. However, 
this system can be problematic in patients with chronic 
hepatitis and a history of primary extrahepatic malig-
nancy, and who are at risk of both HCC and LM, because 
it can be difficult to distinguish between the two tumor 
types. A single retrospective study reported the diagnos-
tic performance of MRI/CT LI-RADS in patients at risk 
of both HCC and LM [10], but because of sample size 
limitations, the authors did not further investigate the 
diagnostic features, nor methods to improve diagnostic 
performance. Zhou et al. reported that by adjusting early 
washout onset to 45 s in LI-RADS M, the specificity for 
differentiating HCC from intrahepatic cholangiocarci-
noma could be significantly increased [11].

Nonetheless, there is no research confirming reliable 
criteria for the differential diagnosis of HCC from LM 
in patients with risks for both hepatitis and extrahe-
patic malignancy. Machine learning (ML) is an emerg-
ing field in medical image analysis, and it can be used to 
create accurate diagnostic models and identify complex 
relationships between variables and outcomes that may 
go undetected using traditional statistical approaches. 
Therefore, our multicenter retrospective study aimed to 
explore effective CEUS features and develop machine 
learning models for distinguishing HCC from LM in 
patients with chronic hepatitis and extrahepatic primary 

malignancy, and then to compare the performance of the 
models with that of LI-RADS.

Methods
Subjects
This retrospective multicenter study was conducted in 
accordance with the Declaration of Helsinki and ethics 
approval was obtained from all participating centers. The 
requirement for informed consent was waived because 
of the retrospective design. This study used patient data 
from a multicenter liver cancer database (http://www.
usliver.org/home.html) and was registered at clinical-
trials.gov (NCT03871140). This study included 2811 
patients with HCC and 399 with LM (recruited from 25 
centers) who underwent CEUS with SonoVue (Bracco) 
between July 2017 and January 2022.

The inclusion criteria were: (i) the presence of chronic 
hepatitis B; (ii) the presence of visible nodules on CEUS; 
and (iii) confirmation of all visible nodules by postopera-
tive pathology. The exclusion criteria were: (i) any treat-
ment before CEUS; (ii) those that did not undergo CEUS 
at the corresponding center within three months before 
surgery; and (iii) absence of standard images available 
for review by the investigators. In patients with multiple 
tumors, the largest tumor was examined. All patient clin-
ical information was collected from a database of elec-
tronic medical records.

Contrast-enhanced ultrasound
CEUS was performed using different ultrasonography 
systems, including LOGIQ E9 (GE Healthcare), IU22 
(Philips), and Aplio 500 (Canon Medical Systems) sys-
tems. All patients were examined after intravenous injec-
tion of the SonoVue ultrasound contrast agent, which 
contains sulfur hexafluoride encapsulated in a phospho-
lipid shell. A 2.5-ml bolus injection was administered into 
the antecubital vein. The CEUS used a standardized pro-
tocol in all patients, with continuous assessment of the 
arterial phase (first 5 to 30–45 s) until maximum contrast 
enhancement was reached within the lesion, followed 
by intermittent scanning with short sweeps through the 
lesion at several time points as follows: (i) continuously 
performed CEUS for 2  min, (ii) followed by 5-s videos 
stored at intervals of 30 s until 5 min to evaluate the late 
venous phase. All ultrasound (US) images were stored in 
DICOM format and uploaded into the database. Video 
clips were reviewed on a computer screen by the investi-
gators using a proprietary software package (Ebit Sanita, 
AET).
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LI-RADS algorithm
All liver tumors were categorized according to the 2017 
CEUS LI-RADS criteria: LI-RADS-1 = definitely benign; 
LI-RADS-2 = probably benign; LI-RADS-3 = intermediate 
probability of malignancy; LI-RADS-4 = probably HCC; 
LI-RADS-5 = definitely HCC; LI-RADS-M = probably or 
definitely malignant, not necessarily HCC.

Two senior radiologists (Dr RQ. Liu and Dr YX. Chen, 
with > 10 years of experience in liver CEUS imaging) 
blinded to the pathological findings reviewed the CEUS 
images to reach a consensus for the evaluation of LI-
RADS and CEUS features. One expert-level radiologist 
(Dr. F. Xiao, with > 15 years of experience in liver CEUS 
imaging) blinded to the pathological findings made the 
final diagnostic decision if no consensus was reached.

Imaging analysis
To identify differences in CEUS features between HCC 
and LM, enhancement patterns were classified as follows: 
(1) arterial phase enhancement pattern, (2) homogeneity, 
(3) washout type, (4) unclear border, (5) tumor artery, (6) 
wheel enhancement, and (7) rim enhancement. Arterial 
phase enhancement pattern was defined as enhancement 
(hyper-, iso-, or hypo-enhancement) compared with the 
surrounding parenchyma over 10 to 30–45 s after admin-
istration. Homogeneity was defined as the same enhance-
ment echoes in the arterial phase, whereas two or more 
enhancement echoes were categorized as heterogene-
ity. Washout type was defined according to the lesion 
becoming hypoechoic compared with the surrounding 
parenchyma in the portal-venous phase. Washout types 
included mild washout and marked washout, defined as 
washout within 60 s and markedly hypo-enhanced within 

two minutes, respectively. An unclear border was defined 
as nodular with a burr or fuzzy margin on all sides. A 
tumor artery was defined as obvious intratumor vas-
culature in the arterial phase. Wheel and rim enhance-
ment were defined as wheel and rim type enhancement 
in the arterial phase (Table S1). In addition, the optimal 
mild washout time was explored to maximize diagnostic 
performance.

Machine-learning model development
ML-based algorithms were used to develop a predictive 
model to find useful independent predictors of the out-
come under investigation. Three ML-based algorithms 
were evaluated: (1) a gradient-boosted model (GBM) 
[12], (2) a random forest model [13], and (3) a generalized 
linear model (GLM) [14]. Hyperparameter tuning of the 
ML algorithms was performed on selected CEUS feature 
lists using a grid search with 5-fold cross-validation with 
ten repeats. The above algorithms were used to analyze 
the contribution of each imaging feature (gain) to the 
rates of LM. After identifying the most appropriate imag-
ing features, we used these as predictor variables to con-
struct corresponding ML models.

Online model deployment
After training, the GLM was saved in a file that could 
be loaded online. To make it available, we created a web 
application that can make predictions from new data 
entered by the user. Using the user’s answers to five ques-
tions, the application provides the probability of HCC/
LM diagnosis.

Fig. 1  A flowchart shows patients’ inclusion and research design
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Statistical analyses
In the baseline comparisons, Student’s t-test or the 
Mann–Whitney U test was used to compare continuous 
variables, and Pearson’s chi-square or Fisher’s exact test 
was used to evaluate categorical variables. Propensity-
score models were calculated using a multivariable logis-
tic regression model. All patients included in this study 
had hepatitis, and the presumed confounders (age, diam-
eter, sex, abdomen pain, vascular invasion, and extrahe-
patic tumor) were used as independent variables for the 
model fitting for the training and validation cohorts. Pro-
pensity score matching was used to reduce the influence 
of confounders and selection bias. The enrolled patients 
were matched using 1:1 nearest neighbor matching with 
a caliper distance set at 0.05 standard deviations of the 
logit of the propensity score for the training cohort 
and validation cohort. The training cohort consisted of 
patients with hepatitis. The validation cohort consisted of 
patients with both hepatitis and extrahepatic tumor.

Kappa coefficients were used to assess interobserver 
consistency in LI-RADS and arterial phase enhance-
ment patterns between two senior radiologists. A 
restricted cubic spline fitting was used to visualize the 
nonlinear relationship between the independent vari-
able and the dependent variable [15, 16]. A two-piece-
wise linear regression model using a smoothing function 

was used to examine the effect of different thresholds 
for the mild washout time on LM rates. The threshold 
level was determined using trial and error, and included 
selecting the point in the function curve showing a sharp 
change and a pre-defined interval on either side, and 
then choosing the point that gave the maximum model 
likelihood.

The relationships between CEUS features of LM (in the 
form of rank variables, continuous variables, and other 
variables) were assessed using Pearson correlation coef-
ficients. CEUS features showing significant associations 
with HCC and LM were screened using a GLM with 
the Hosmer–Lemeshow goodness-of-fit set to the confi-
dence interval (CI) for exp(B), followed by the designa-
tion of dummy variables for multi-categorical variables 
and backward regressions to further screen variables. For 
GBM and the random forest model, backward stepwise 
analysis was used to select the variables according to the 
Akaike information criterion.

Pathological results were used as the reference stan-
dard, and optimal cutoff values for the prediction of LM 
were identified using the highest Youden index and maxi-
mization of sensitivity and specificity. The GBM, random 
forest, and GLM were run using the gbm R package, ran-
domForest R package, and glm R package. Two-sided 
P-values < 0.05 were considered statistically significant. 

Table 1  Patient characteristics
Parameter All data Training Cohort Validation Cohort

HCC(N = 2811) LM(N = 399) P HCC(N = 183) LM(N = 183) P HCC(N = 44) LM(N = 44) P
Age 57.39 ± 11.39 58.79 ± 10.61 0.020 57.26 ± 11.16 59.15 ± 9.67 0.083 61.52 ± 10.84 59.75 ± 11.27 0.454

Diameter 4.99 ± 3.32 4.43 ± 2.81 0.001 5.36 ± 11.93 5.15 ± 4.82 0.821 4.97 ± 4.23 5.03 ± 5.82 0.954

Sex < 0.001 0.348 0.280

Female 504 (17.93%) 154 (38.60%) 46 (25.14%) 54 (29.51%) 16 (36.36%) 21 (47.73%)

Male 2307 (82.07%) 245 (61.40%) 137 (74.86%) 129 (70.49%) 28 (63.64%) 23 (52.27%)

Jaundice 0.096 0.410 0.148

No 2737 (97.37%) 394 (98.75%) 179 (97.81%) 181 (98.91%) 41 (95.35%) 44 (100.00%)

Yes 74 (2.63%) 5 (1.25%) 4 (2.19%) 2 (1.09%) 2 (4.65%) 0 (0.00%)

Abdomen pain 0.001 0.068 0.141

No 2354 (83.74%) 308 (77.19%) 153 (83.61%) 139 (75.96%) 36 (83.72%) 31 (70.45%)

Yes 457 (16.26%) 91 (22.81%) 30 (16.39%) 44 (24.04%) 7 (16.28%) 13 (29.55%)

Vascular invasion 0.010 0.091 0.091

No 2572 (91.50%) 380 (95.24%) 167 (91.26%) 175 (95.63%) 39 (88.64%) 43 (97.73%)

Yes 239 (8.50%) 19 (4.76%) 16 (8.74%) 8 (4.37%) 5 (11.36%) 1 (2.27%)

Multiple tumors 0.993 0.224 0.080

No 2262 (80.47%) 321 (80.45%) 154 (84.15%) 145 (79.23%) 40 (90.91%) 41 (93.18%)

Yes 549 (19.53%) 78 (19.55%) 29 (15.85%) 38 (20.77%) 4 (9.09%) 3 (6.82%)

Extrahepatic tumor < 0.001 NA NA

No 2691 (95.73%) 7 (1.75%) 183 (100%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Yes 120 (4.27%) 392 (98.25%) 0 (0.00%) 183 (100%) 44 (100.00%) 44 (100.00%)

Chronic hepatitis B 0.706 NA NA

No 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Yes 2811(100%) 399 (100%) 183 (100%) 183 (100%) 44 (100.00%) 44 (100.00%)
LM: Liver metastasis; HCC: Hepatocellular carcinoma; NA: Not available
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All data were analyzed with R software version 4.1.0 
(http://www.r-project.org).

Results
Patient characteristics
A total of 3210 patients were included in the multicenter 
database (Fig. 1). After PSM, 366 patients with hepatitis 

were selected as the training cohort, and 88 patients with 
both hepatitis and extrahepatic primary malignancy were 
selected as the external validation cohort. There were no 
significant differences in clinical characteristics between 
patients with HCC and LM in the training and validation 
cohorts (Table 1).

Fig. 2  Explore the knee of the optimal mild washout time
The rate of a composite LM outcome was plotted against the mild washout time and fitted with a curve indicating the relationship between the washout 
time and the rate of LM
Abbreviations: LM, Liver metastasis
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Interobserver agreement
We found good interobserver agreement between the 
two senior radiologists with respect to both LIRADS 
and arterial phase enhancement patterns (k = 0.845 and 
k = 0.850, respectively; Tables S2 and S3).

Exploration of the optimal mild washout time for 
differentiating between HCC and LM
There was a nonlinear relationship between a mild wash-
out time and the risk of LM. The risk of LM was signifi-
cantly lower (P < 0.001) with a mild washout time up to 

Table 2  CEUS features in the training and validation cohort
Parameter Correlation 

index
(r)

Training Cohort Validation Cohort
HCC 
(N = 188)

LM (N = 188) P HCC (N = 44) LM (N = 44) P

Diameter 0.01738 4.29 ± 2.76 4.46 ± 2.77 0.343* 4.23 ± 2.93 4.01 ± 2.31 0.822*

Wash-in Time 0.08857 14.59 ± 4.78 15.37 ± 5.87 0.209* 13.70 ± 3.78 15.32 ± 6.03 0.323*

Wash-out Time -0.39343 75.85 ± 63.32 35.26 ± 20.82 < 0.001* 70.66 ± 60.49 34.41 ± 16.69 < 0.001*

Arterial phase enhancement -0.16467 < 0.001 < 0.001*

Hyper-enhancement 165 (90.16%) 114 (62.30%) 40 (90.91%) 26 (59.09%)

Iso-enhancement 9 (4.92%) 20 (10.93%) 3 (6.82%) 6 (13.64%)

Hypo-enhancement 9 (4.92%) 49 (26.78%) 1 (2.27%) 12 (27.27%)

Homogeneity 0.20708 < 0.001 0.019

Homogeneity 108 (59.02%) 72 (39.34%) 27 (61.36%) 16 (36.36%)

Heterogeneity 75 (40.98%) 111 (60.66%) 17 (38.64%) 28 (63.64%)

Washout 0.20094 < 0.001 0.179

No 36 (19.67%) 10 (5.46%) 7 (15.91%) 3 (6.82%)

Yes 147 (80.33%) 173 (94.54%) 37 (84.09%) 41 (93.18%)

Washout type 0.49244 < 0.001 < 0.001

No 37 (20.22%) 11 (6.01%) 8 (18.18%) 3 (6.82%)

Mild washout 141 (77.05%) 78 (42.62%) 33 (75.00%) 20 (45.45%)

Marked washout 5 (2.73%) 94 (51.37%) 3 (6.82%) 21 (47.73%)

Washout type I 0.63146 < 0.001 < 0.001

No/Mild washout (> 60s) 139 (75.96%) 22 (12.02%) 30 (68.18%) 5 (11.36%)

Marked/Mild washout (≤ 60s) 44 (24.04%) 161 (87.98%) 14 (31.82%) 39 (88.64%)

Washout type II 0.65846 < 0.001 < 0.001

No/Mild washout (> 54s) 144 (78.69%) 25 (13.66%) 35 (79.55%) 5 (11.36%)

Marked/Mild washout (≤ 54s) 39 (21.31%) 158 (86.34%) 9 (20.45%) 39 (88.64%)

Unclear Border 0.50787 < 0.001 < 0.001

No 134 (73.22%) 38 (20.77%) 29 (65.91%) 10 (22.73%)

Yes 49 (26.78%) 145 (79.23%) 15 (34.09%) 34 (77.27%)

Tumor artery 0.02126 0.619 1.000

No 143 (78.14%) 139 (75.96%) 36 (81.82%) 36 (81.82%)

Yes 40 (21.86%) 44 (24.04%) 8 (18.18%) 8 (18.18%)

Wheel enhancement -0.07901 0.121* 1.000*

No 177 (96.72%) 182 (99.45%) 43 (97.73%) 43 (97.73%)

Yes 6 (3.28%) 1 (0.55%) 1 (2.27%) 1 (2.27%)

Rim enhancement 0.37034 < 0.001 < 0.001

No 179 (97.81%) 132 (72.13%) 44 (100.00%) 31 (70.45%)

Yes 4 (2.19%) 51 (27.87%) 0 (0.00%) 13 (29.55%)

LI-RADS 0.50722 < 0.001 < 0.001

3 6 (3.28%) 4 (2.19%) 0 (0.00%) 2 (4.55%)

4 27 (14.75%) 3 (1.64%) 5 (11.36%) 1 (2.27%)

5 105 (57.38%) 11 (6.01%) 25 (56.82%) 2 (4.55%)

M 45 (24.59%) 165 (90.16%) 14 (31.82%) 39 (88.64%)
LM: Liver metastasis; HCC: Hepatocellular carcinoma. Correlation index (r) is Pearson’s correlation coefficient. P*: Continuous variables—Kruskal Wallis rank sum test; 
Count variables < 10—Fisher exact test

The correlation index is Pearson’s correlation coefficient. The size of the circle reflects the degree of statistical significance

Abbreviations: DM, Diameter; WIT, Wash-in Time; WOT, Wash-out Time; APHE, Arterial phase enhancement; HG, Homogeneity; WO, Washout; WO type, Washout 
type; WO type I, Washout type I; WO type II, Washout type II; UCB, Unclear Border; TA, Tumor artery; WE, Wheel enhancement; RE, Rim enhancement; LM, Liver 
metastasis
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an abrupt change point (mild washout time = 68 s), with 
the odds ratio (OR) of the mild washout time being 0.9 
(95% CI: 0.9–1.0). With a mild washout time > 68  s, the 
relationship between the risk of LM and mild wash-
out time was not significant (P = 0.066). Comparison of 
the mild washout time (53–68 s) between HCC and LM 
revealed that a washout time of 54 s was the best point 
for differentiating between them, with a diagnostic accu-
racy of 79.4% (Table S4; Fig. 2). Therefore, we created a 
washout type II feature, which combined mild washout 
(≤ 54 s) and marked washout into a predictor variable for 
LM.

Univariate and correlation analysis of CEUS features for 
differentiating between HCC and LM
According to the 2017 CEUS LI-RADS criteria applied to 
the training cohort, 138 HCCs and 18 LMs were evalu-
ated as LI-RADS 3–5, and 45 HCCs and 165 LMs were 
evaluated as LI-RADS-M. Compared with HCCs, LMs 
showed significantly higher proportions of arterial hypo-
enhancement (26.8%), heterogeneity (60.7%), washout 
(94.5%), washout type I (88%), washout type II (86.3%), 

unclear border (79.2%), and rim enhancement (27.9%) 
(all P < 0.001). In the univariate analysis, arterial phase 
enhancement, heterogeneity, washout times, washout, 
washout type, washout type I, washout type II, unclear 
border, rim enhancement, and LI-RADS classification 
were significant risk factors for LM (P < 0.001). Correla-
tion analysis showed that washout times, washout type, 
washout type I, washout type II, unclear border, rim 
enhancement and LI-RADS classification were correlated 
with LM (3<|r|) (Table 2; Fig. 3).

CEUS feature selection
After the washout time was optimized, univariate anal-
ysis and correlation analysis were performed between 
features of LM and HCC. The selected CEUS feature 
list included five variables: arterial phase enhancement, 
homogeneity, washout type II, unclear border, and rim 
enhancement, according to the above analysis and expert 
advice. We generated the GBM, random forest, and GLM 
using the above-selected features, taking pathological 
results as the reference standard diagnoses. The three 
most influential predictors in the ML models applied to 

Fig. 3  Univariate correlation matrix for the different CEUS features
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the training cohort were washout type II, unclear border, 
and rim enhancement (Fig. 4).

Comparison of machine learning models with LI-RADS
We compared the diagnostic performance of LI-RADS, 
GBM, random forest, and the GLM on the external vali-
dation dataset consisting of patients with double risks of 
LM and HCC. The sensitivity, specificity, positive predic-
tive value (PPV), negative predictive value (NPV), and 
accuracy of LI-RADS were 68.2%, 88.6%, 85.7%, 26.4%, 
and 0.784, respectively. The GBM’s sensitivity, specificity, 
PPV, NPV, and accuracy were 75.0%, 86.4%, 83.9%, 28.1%, 
and 0.807, respectively, with sensitivity being significantly 
higher than that of LI-RADS. The sensitivity, specificity, 
PPV, NPV, and accuracy were 79.5%, 86.4%, 85.4%, 19.1%, 
and 0.83, respectively, for the random forest, and 77.3%, 
88.6%, 87.2%, 20.4%, and 0.83 for the GLM. The random 
forest and GLM showed significantly higher sensitivity 
and accuracy than LI-RADS (P < 0.001; Table 3; Fig. 5).

Model interpretation at the individual scale
The GLM model is deployed online at the following URL: 
(https://livercancer.shinyapps.io/DynNomapp/). The user 
answers five questions to obtain a prediction of the prob-
ability of HCC/LM (Fig. 6A). As an example, we provide 
the features and prediction for one patient with a liver 
tumor. This patient was highly suspected of HCC or LM 
because of a history of chronic hepatitis and colorec-
tal cancer, and biopsy was hard to perform because of a 
high-risk location that was adjacent to a blood vessel. The 
lesion showed arterial phase hyperenhancement, hetero-
geneity, a clear border, a mild washout time of 56 s, and 
non-rim enhancement on CEUS. The observation was 
categorized as LM according to the LI-RADS algorithm, 
whereas to the contrary, the GLM evaluated it as HCC. 
After discussion at the multidisciplinary team meeting 
and according to the patient’s choice, this patient under-
went hepatectomy instead of systemic treatment. The 
postoperative pathology confirmed HCC (Fig. 6B).

Discussion
When patients have both chronic liver disease and a his-
tory of extrahepatic primary malignancy, and are at risk 
of both HCC and LM, the risk of misdiagnosing metas-
tasis as HCC on imaging could be higher than in patients 
without a history of extrahepatic malignancy [17, 18]. In 
this study, we evaluated the effectiveness of CEUS fea-
tures and established ML models for HCC and LM. We 
observed marked differences in the enhancement fea-
tures of vascular characteristics and tumor morphology 
between HCC and LM. We then developed an ML model 
using the training cohort and subsequently validated it 
using an independent cohort of patients with hepatitis 
and extrahepatic tumors [19].

Terz et al. reported that LI-RADS could result in a reli-
able non-invasive diagnosis in patients with HCC [20]. In 
the present study, LI-RADS showed moderate diagnostic 

Table 3  Comparison of diagnostic performance of the different 
criteria for HCC/LM in the validation cohorts
Diag-
nostic 
criteria

Sensitivity Specificity PPV NPV Accuracy

LI-RADS 68.2% 88.6% 85.7% 26.4% 0.784

Gradient 
Boosting 
Model

75.0%* 86.4% 83.9% 28.1% 0.807

Random 
Forest

79.5%* 86.4% 85.4% 19.1%* 0.830*

General 
Linear 
Model

77.3%* 88.6% 87.2% 20.4%* 0.830*

Machine Learning (GBM, RF and GLM): based on Arterial phase enhancement, 
Homogeneity, Washout type II, Unclearly border and Rim enhancement

GBM: Gradient Boosting Model; RF: Random Forest; GLM: General Linear Model
*There was statistical difference compared with LI-RADS (Two-sided 
P-values < 0.05)

Fig. 4  CEUS variables screening by univariate, correlation analysis and machine learning models
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Fig. 5  Importance of the predictor variables and the diagnostic performance of LI-RADS and machine learning models
(A). Schematic representation in the CEUS LI-RADS; (B) The diagnostic performance of LI-RADS; (C). Variables show in the Gradient Boosting Model; (D). 
The diagnostic performance in the Gradient Boosting Model; (E). Variables show in the Random Forest; (F). The diagnostic performance in the Random 
Forest; (G). Variables show in the General Linear Model; (H). The diagnostic performance in the General Linear Model
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performance (accuracy: 0.784) in the differentiation 
between HCC and LM in high-risk patients. Univariate 
and correlation analysis revealed that LI-RADS moder-
ately correlated with LM and HCC. This suggests that the 
LI-RADS algorithm could contribute to the identification 
of patients with HCC and LM.

A finding of note is that while rim enhancement is 
applied in the LI-RADS algorithm [21, 22], we found that 
washout type II and unclear borders were significantly 
correlated with LM. In the training cohort, LM showed 
a significantly higher proportion of unclear borders 
(145/183, 79.2%) than HCC (49/183, 26.8%). Using the 
tumor margins as the diagnostic characteristic allowed 
differentiation between HCC and LM. Higher propor-
tions of unclear borders in LM might be due to more 

infiltration of surrounding tissues by LM in comparison 
with HCC [23], with HCC often having a pseudo capsule 
composed of inflamed and fibrotic tissue, especially in 
cirrhotic livers [24]. Therefore, LM shows a more unclear 
border than HCC on CEUS.

In terms of washout patterns, early mild washout 
and marked washout were more frequently detected in 
LM (161/183 cases, 88.0%) than in HCC (44/183 cases, 
24.0%), which is consistent with previous research [11, 
25]. We found that early mild washout onset tended to 
be ≤ 54 s in most LMs, rather than the < 60 s state in LI-
RADS. Mild washout (≤ 54 s) and marked washout were 
independent diagnostic indicators for differentiating 
between HCC and LM, and we therefore integrated mild 
washout (≤ 54  s) and marked washout into the washout 

Fig. 6  Model interpretation at the actual case
(A). Machine learning online model deployment. (B). One case shows arterial phase hyper-enhancement nodule, clear border, and mild washout at 56s, 
then the postoperative pathology confirmed HCC.
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type II feature, which was selected as one of the top three 
features for the ML models.

In this study, we investigated the most effective 
CEUS features for differentiating HCC and LM. By 
identifying and utilizing the variables washout type II, 
unclear border, and rim enhancement, we incorporated 
expert advice and added two potentially valuable features 
(arterial phase enhancement and homogeneity) to the 
ML models. With respect to the ML models, GBM is a 
machine learning technique used in regression and clas-
sification tasks, and is well known for converting weak 
learners into strong learners [26]. Good performance in 
a learning algorithm is critical to developing an accu-
rate diagnostic model, and our GBM had significantly 
higher sensitivity than LI-RADS. We were surprised that 
the random forest and GLM also showed significantly 
higher sensitivity and accuracy than LI-RADS.

Particular strengths of our study are that we tried to 
acknowledge the potential value of LI-RADS in differen-
tiating between HCC and LM while building ML models 
to improve diagnostic performance in an independent 
cohort with both hepatitis and extrahepatic tumor. Our 
findings could provide an additional diagnostic reference 
for HCC and LM.

Our research is subject to some limitations. First, 
only HCC and LM were included in this study, with the 
exclusion of other hepatic malignancies, resulting in 
high specificity (88.6%) for LI-RADS. For this reason, we 
developed an effective CEUS algorithm for differentiating 
HCC from LM in high-risk patients. Second, we did not 
directly compare the diagnostic performance of LI-RADS 
and ML models in the same training cohort and valida-
tion cohort but validated the applicability of our diagnos-
tic models in a population with a risk of both HCC and 
metastases. Finally, this study used retrospective multi-
center data to validate the models, and a future prospec-
tive study is required for further validation of the current 
recommendations.

Conclusions
In addition to rim enhancement, unclear borders and 
washout type II were defined as reliable features for dif-
ferentiating HCC from LM. Both random forest and 
generalized linear models had higher sensitivity and 
accuracy than LI-RADS in the differentiation of HCC 
from LM in patients with chronic hepatitis and extrahe-
patic malignancy.
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GLM	� Generalized linear model
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