
R E S E A R C H  A R T I C L E Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Zhu et al. Cancer Imaging           (2023) 23:60 
https://doi.org/10.1186/s40644-023-00571-w

Cancer Imaging

*Correspondence:
Zhenhua Zhao
zhao2075@163.com

Full list of author information is available at the end of the article

Abstract
Purpose To establish and validate radiomics models for predicting the early efficacy (less than 3 months) of 
microwave ablation (MWA) in malignant lung tumors.

Methods The study enrolled 130 malignant lung tumor patients (72 in the training cohort, 32 in the testing cohort, 
and 26 in the validation cohort) treated with MWA. Post-operation CT images were analyzed. To evaluate the 
therapeutic effect of ablation, three models were constructed by least absolute shrinkage and selection operator and 
logistic regression: the tumoral radiomics (T-RO), peritumoral radiomics (P-RO), and tumoral-peritumoral radiomics 
(TP-RO) models. Univariate and multivariate analyses were performed to identify clinical variables and radiomics 
features associated with early efficacy, which were incorporated into the combined radiomics (C-RO) model. The 
performance of the C-RO model was evaluated by the area under the receiver operating characteristic (ROC) curve 
(AUC), calibration curve, and decision curve analysis (DCA). The C-RO model was used to derive the best cutoff value 
of ROC and to distinguish the high-risk group (Nomo-score of C-RO model below than cutoff value) from the low-risk 
group (Nomo-score of C-RO model higher than cutoff value) for survival analysis of patients.

Results Four radiomics features were selected from the region of interest of tumoral and peritumoral CT images, 
which showed good performance for evaluating prognosis and early efficacy in three cohorts. The C-RO model had 
the highest AUC value in all models, and the C-RO model was better than the P-RO model (AUC in training, 0.896 vs. 
0.740; p = 0.036). The DCA confirmed the clinical benefit of the C-RO model. Survival analysis revealed that in the C-RO 
model, the low-risk group defined by best cutoff value had significantly better progression-free survival than the high-
risk group (p<0.05).

Conclusions CT-based radiomics models in malignant lung tumor patients after MWA could be useful for 
individualized risk classification and treatment.

Key points
 • Radiomics features combined with clinical factors performed well in prognosis evaluation.
 • CT-based radiomics models can predict the survival after MWA in malignant lung tumor patients.
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Introduction
Lung cancer seriously threatens the life and health of 
humans, and it takes the lives of more people than any 
other cancer [1, 2]. Surgical intervention is most appli-
cable to early-stage lung cancer patients and is consid-
ered the best curative option [3]. However, approximately 
80% of lung cancer patients do not benefit from surgical 
resection because the disease is detected at a late stage 
and progresses rapidly [4]. In most patients with unre-
sectable lung cancer, the benefits from traditional chemo-
therapy and radiotherapy are limited [5, 6]. Several novel 
local treatment strategies have emerged in recent years 
including local ablation therapy. Among various ablation 
therapies, microwave ablation (MWA) is one of the most 
effective methods for the treatment of lung neoplasms [7, 
8]. How to define and judge immediate efficacy is one of 
the problems that must be urgently solved. The ablated 
lesion is usually slightly larger than at baseline because 
of tissue edema in the first 3 months; however, after 3–6 
months, the lesion becomes smaller, and any increase in 
volume at this stage is considered a possible relapse [9]. 
Ye et al. [4] proposed that the effect of thermal ablation 
can only be detected after 3 months of imaging follow-
up. However, there are no explicit criteria to assess post-
ablation performance and early prognosis after MWA 
[10]. Therefore, it is necessary to identify new biological 
markers to evaluate efficacy before 3 months, and stratifi-
cation of prognostic risks could allow more timely inter-
ventions, such as second MWA and adjustment of other 
therapies, which might help to reduce tumor load and 
prolong survival [11].

Radiomics is defined as the high-throughput mining 
and quantification of radiologic images, which provides 
essential information about the tumor and peritumor 
microenvironment [12, 13]. Radiomics features obtained 
from CT images have shown excellent diagnostic and 
prognostic performance in many tumors including brain 
cancer [14], nasopharynx cancer [15], liver cancer [16], 
and lung cancer [17]. Markich et al. [18] identified pre-
radiofrequency ablation (RFA) features predicting local 
control of lung metastases following RFA. The high-
est prognostic performance was reached with a multi-
variate model including an Radiomics prognostic score 
built on four radiomics features from pre-RFA and early 
revaluation CT scans (cross-validation concordance 
index = 0.74) in which the Radiomics prognostic score 
remained an independent predictor [cross-validated haz-
ard ratio = 3.49, 95% confidence interval (CI), 1.76–6.96]. 
Liu et al. [19] explored three CT-based radiomics fea-
tures as prognostic factors for local tumor progression 
after ablation of lung cancer, and used the best thresh-
old value for each feature to stratify prognostic risks for 
patients, that is, into high and low risk. To the best of 
our knowledge, there are no studies aimed at developing 

tumoral and peritumoral models to predict the early effi-
cacy and prognosis of MWA in malignant lung tumors, 
also no studies that used the cutoff value of combined 
model that integrated tumoral, peritumoral, and clini-
cal features to classify patients into high-risk and low-
risk groups for survival analysis. Here, we used a new 
radiomics approach to identify tumoral and peritumoral 
imaging biomarkers for predicting early efficacy of MWA 
in malignant lung tumors [20, 21].

This study explored the non-invasive prediction of early 
postoperative efficacy (less than 3 months) using three 
models of pulmonary malignant ablation: the tumoral 
radiomics (T-RO), peritumoral radiomics (P-RO), and 
tumoral-peritumoral radiomics (TP-RO) models, and 
combined radiomics (C-RO) models. The predictive per-
formance of the models were evaluated using indepen-
dent testing and validation groups. The cutoff value of 
receiver operating characteristic (ROC) was calculated to 
stratify the risks of the patient prognosis.

Materials and methods
Patients
The hospital ethics committee approved this retrospec-
tive study and waived the need to sign informed consent 
forms. A total of 145 patients (between March 2018 and 
March 2021) and 30 patients (between April 2021 and 
January 2022) with confirmed malignant lung tumors 
treated with MWA in Shaoxing People’s hospital (Shaox-
ing, China) were enrolled in the study. All primary lung 
cancers and some metastatic lung cancers were con-
firmed by needle biopsy, and remaining tumors were 
presumed to be metastatic lung cancer based on imag-
ing characteristics. CT images were collected immedi-
ately after MWA treatment in 16-slice spiral CT scanner 
(MinFound, Shaoxing Zhejiang, China). All patients were 
staged according to the modified Response Evalua-
tion Criteria in Solid Tumors  (m-RECIST) criteria [22]. 
Finally, a total of 104 patients of the first period were 
enrolled and assigned to the training and testing cohorts 
randomly at a ratio of 7:3 [23]. The training cohort 
included 72 patients and the testing cohort included 32 
patients. A total of 26 patients of the next period were 
enrolled to the validation cohort (Fig. 1).

Pre-ablation assessment and ablation procedure
Immediate pre-ablation imaging on the day of ablation 
was performed using a 16-slice spiral CT scanner (Min-
Found) with the following settings: 16 × 1.2 collimation, 
120  kV, 160 mAs, 0.5  s/round (s/r) and 2  mm section 
thickness. Two interventional radiologists, each with 
more than 5 years of experience, examined each lesion on 
CT images to plan the ablation procedure. Patients who 
were taking anticoagulants were required to stop taking 
them for 7 days prior to the ablation.
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Patients were positioned in a prone or supine posi-
tion for each surgery depending on the ablation method. 
Analgesic medication with lidocaine (1.67  mg/kg body 
weight) was administered. All ablations were performed 
using CT fluoroscopic guidance with the following 
parameters: 16 × 0.6 collimation, 120  kV, 80 mAs, 0.5  s/
rand 2 mm section thickness.

The determined antenna entrance was established 
under local anesthetic immediately before start of the 
ablation procedure. Microwave antennas were inserted 
through a single pleural puncture after performing a 
small skin incision. Only one microwave antenna was 
used for ablation in each case. The energy output was 
adjusted to achieve complete ablation according to the 
manufacturer’s protocols, which vary depending on the 
size of the lesion. The MWA course was completed by 
needle-path cauterization under thermal coagulation to 
avoid tumor cell implantation when the tumor was com-
pletely covered by ground-glass opacity (GGO; indicating 
the ablation area), as verified by intraoperative CT. For 
few lesions adjacent to large blood vessels and bronchi, 
although the morphology of GGO may vary after MWA, 
the primary principle was to ensure complete coverage 
of the lesion by GGO. Patients were required to remain 
on bed rest for the first 8 h after ablative surgery, during 
which they were closely monitored by physicians.

Endpoints and follow-up
The lesions after 3 months of MWA treatment were 
used as the reference [9]. According to m-RECIST cri-
teria, the clinical treatment response after MWA was 
defined: Complete response (CR) refers to the disappear-
ance of arterial enhancement in all target lesions. Partial 

response (PR) refers to a reduction of ≥ 30% in the total 
length diameter of all target lesions. Progressive disease 
(PD) refers to an increase of 20% in the total of the length 
diameter of all target lesions, or the emergence of new 
lesions; Stable disease (SD) means that the target lesion 
has neither shrunk to PR nor enlarged to PD. Patients 
were categorized into effective treatment (CR + PR + SD) 
and ineffective treatment (PD). All patients were fol-
lowed-up immediately after MWA treatment, then every 
3 months during the year after MWA treatment, and 
annually after that.

Workflow of radiomics analysis
The workflow of the radiomics analysis included image 
segmentation, feature extraction, feature selection, model 
building and model evaluation (Fig. 2).

Image segmentation
A radiologist with 10 years of experience used ITK-SNAP 
software (version 3.8.0, http://www.itksnap.org) to per-
form three-dimensional segmentation of malignant lung 
tumors, the radiologists were blinded to the medical 
history and the follow-up results. The region of interest 
(ROI) was manually drawn in the tumoral and peritu-
moral regions on CT images, avoiding large blood vessels 
and the bronchus. The peritumoral region is indicated 
by GGO around the tumor. A radiologist with 20 years 
of experience confirmed the segmentation results (Fig. 3).

Radiomics feature extraction
Imaging features were calculated for each patient using 
Artificial Intelligence Kit software (A.K. software; GE 
Medical Healthcare, Milwaukee, Wisconsin). Features 

Fig. 1 Flow diagram of the study enrolment patients

 

http://www.itksnap.org
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from tumor, peritumor, or a combination were used for 
subsequent analyses. A total of 396 radiomics features 
were extracted [24], including 42 histogram features, 
180 Gy-level run-length matrix features, 19 morphologi-
cal features, 11  Gy-level size-zone matrix features, and 
144 Gy-level co-occurrence matrix features.

Radiomic feature selection and model building
To eliminate dimensional disparities, each image was 
normalized to achieve a nonzero mean and unit variance 
across the training, testing and validation cohorts. Both 
feature selection and model building were performed in 
the training cohort (Fig. 4).

Tumoral and peritumoral features were selected using 
least absolute shrinkage and selection operator (LASSO) 
regression via a continuous shrinking operation, thereby 

Fig. 3 The region of interest (ROI) is depicted as a drawing. A 64-year-old man with hepatocellular carcinoma metastatic to the left lower lobe, as de-
termined by histopathology. (a. d) CT image in the lung window. (b) The manually delineated ROI in the tumor for the T-RO model. (c) A 3D lesion was 
generated for the T-RO model. (e) The manually delineated ROI around the tumor for the TP-RO model. The solid black arrows indicate the large blood 
vessels; the black dotted arrows indicate lesions. (f) A 3D lesion generated for the TP-RO model

 

Fig. 2 The workflow of the radiomics model construction
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minimizing regression coefficients to reduce the likeli-
hood of overfitting [25]. Single factors for determining 
treatment efficacy were assessed using univariate analy-
sis. Important variables from univariate analysis were 
then entered into a multivariate logistic regression model 
to identify potential risk factors associated with treat-
ment outcome. The fusion radiomics feature combined 
the tumoral and peritumoral signatures. The clinical risk 
factors were combined with the tumor and peritumor 
fusion radiomics features to build a combined model 
using multivariable logistic regression modeling.

Model evaluation
AUCs were used to measure the discriminative power 
for predicting treatment efficacy using ROCcurves. The 
Delong test was used to compare the curves many times 
with Bonferroni-adjusted p values. The AUC was esti-
mated with 95% CI, as well as sensitivity and specificity. 
In the combined model, a radiomics nomogram was cre-
ated as a graphical representation. Harrell’s C-index was 

used to assess the nomogram’s discriminative ability. To 
analyze the agreement between nomogram-predicted 
treatment efficacy and actual treatment efficacy using the 
calibration curves, the Hosmer-Lemeshow test was per-
formed. The net benefits at different threshold probabili-
ties in the cohorts were measured, and DCA was used to 
establish the nomogram’s clinical relevance.

Survival analysis
The disease progression was used as an endpoint in 
the patient survival analysis, which was defined as an 
increase of ≥ 20% in the total of the length diameter of all 
target lesions, or the emergence of new lesions. The sur-
vival curve was created by Kaplan-Meier survival analysis 
to assess patient survival based on radiomics features of 
tumoral and peritumoral ROIs. The threshold for separat-
ing patients into two survival groups was computed indi-
vidually for best cutoff value in the C-RO model for all 
patients. For each threshold, subjects were grouped into 
survival cohorts above or below the selected threshold 

Fig. 4 Lasso path plot of the T-RO model (a) and P-RO model (c) in the training samples. Mean square error on each fold for the lasso of the T-RO (b) and 
P-RO (d) models
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value. The p-value between the two survival curves was 
calculated.

Statistical analysis
SPSS (version 23.0, US) was used for univariate analysis 
of clinical features. The “glmnet” package of R software 
(version 4.0.3, US) was used to perform LASSO logis-
tic regression to select predictive radiomics features. 
5-folder cross validation on training cohort was used 
to choose the optimal L1 regularization strength. The 
“rms” package was used to construct nomograms and for 

decision curve analysis (DCA). ROC curves were used 
to identify the optimal cutoff values for the Nomo-score 
(maximizing the sum of sensitivity and specificity) to pre-
dict high-risk and low-risk patients, and Kaplan-Meier 
survival analysis was used to analyze the progression-free 
survival (PFS) of the different risk groups. A two-tailed 
p-value < 0.05 was considered statistically significant.

Results
Clinical characteristics
A total of 130 patients were finally enrolled in the study, 
including 104 patients who were judged as effective treat-
ment, and 26 patients who were judged as ineffective 
treatment cohort. The clinical characteristics are shown 
in Table  1. Univariate analysis showed that the factors 
of age, tumor size, minimum GGO margin depth (The 
minimum distance between the tumor margin and the 
ablation zone margin), adjacent large bronchus were sig-
nificantly related to effective treatment and ineffective of 
MWA (Table 1).

In the multivariate analysis, the factors of tumor size 
[odds ratio (OR) 0.919, 95% CI 0.865–0.976] and mini-
mum GGO margin depth (OR 1.353, 95% CI 1.013,1.807) 
were independent predictors of MWA between effective 
treatment and ineffective treatment (Table 2).

Radiomics characteristics
The training cohort included 72 patients (57 effec-
tive treatment vs. 15 ineffective treatment), the test-
ing cohort included 32 patients (26 effective treatment 
vs. 6 ineffective treatment), and the validation cohort 
included 26 patients (21 effective treatment vs. 5 inef-
fective treatment). A total of 396 imaging features were 
finally calculated for each patient from the extracted 
tumoral or peritumoral regions of CT images. Four fea-
tures were finally selected from the combination of the 
two modalities. The comparison of radiomic character-
istics is shown in Table  3. Statistically significant differ-
ences between the effective and ineffective treatment of 
MWA in the training cohorts were found in stdDeviation 
(p = 0.017), Inertia_AllDirection_offset7_SD (p = 0.037), 

Table 1 Comparisons of patient characteristics
Characteristics Effective 

treatment 
cohort

Ineffective 
treatment 
cohort

p 
value

Age, year 63.27 ± 10.73 69.38 ± 10.05 0.010*

Gender 0.096

Male 49 (47.1%) 17 (65.4%)

Female 55 (52.9%) 9 (34.6%)

Tumor pathology 0.387

Primary 20 (19.2%) 7 (26.9%)

Metastasis 84 (80.8%) 19 (73.1%)

Tumor indicators 0.927

Absent 37 (35.6%) 17 (65.4%)

Present 67 (64.4%) 9 (34.6%)

Systematic treatment 0.093

Absent 66 (63.4%) 21 (80.8%)

Present 38 (36.5%) 5 (19.2%)

Tumor Size 12.50 (9.03, 
17.15)

20.05 (12.53, 
31.83)

<0.001*

Minimum GGO margin depth 5.93 ± 1.98 4.78 ± 1.82 0.008*

Maximum GGO margin depth 11.95 (9.75, 
15.88)

11.30 (8.38, 
15.73)

0.331

Density 0.558

Solid 89 (85.6%) 24 (92.3%)

Non-Solid 15 (14.4%) 2 (7.7%)

Location 0.725

Upper middle lobe 56 (53.8%) 13 (50.0%)

Lower lobe 48 (46.2%) 13 (50.0%)

Adjacent large blood vessels 0.088

Absent 67 (64.4%) 12 (46.2%)

Present 37 (35.6%) 14 (53.8%)

Adjacent large bronchus 0.001*

Absent 96 (92.3%) 17 (65.4%)

Present 8 (7.7%) 9 (34.6%)

Margin 0.065

Smooth 72 (69.2%) 13 (50.0%)

Rough 32 (30.8%) 13 (50.0%)

Pleural pull 0.170

Absent 26 (25.0%) 16 (61.5%)

Present 78 (75.0%) 10 (38.5%)
p-value reflected the differences between the effective treatment and 
ineffective treatment cohort, *p < 0.05 (two-sided) was considered statistically 
significant. Minimum (Maximum) GGO margin depth refers to the minimum 
(maximum) distance between the tumor margin and the ablation zone margin

Table 2 Multivariate analysis of patient characteristics
Characteristics B OR (95%CI) p 

value
Age -0.037 0.964 (0.918, 

1.012)
0.137

Tumor Size -0.085 0.919 (0.865, 
0.976)

0.006*

Minimum GGO margin depth 0.302 1.353 (1.013, 
1.807)

0.041*

Adjacent large bronchus 1.057 2.878 (0.854, 
9.696)

0.088

*p < 0.05 (two-sided) was considered statistically significant. Minimum GGO 
margin depth refers to the minimum distance between the tumor margin and 
the ablation zone margin
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Inertia_angle0_offset1 (p = 0.011), and LongRunLow-
GreyLevelEmphasis_angle45_offset4 (p = 0.039,Table 3).

Performance of the radiomics models
The ROC curves of the three radiomics models are shown 
in Fig.  5. The AUC, sensitivity and specificity of the 

TP-RO model were higher than that of the T-RO model 
or the P-RO model in the training cohorts (Table 4).

Establishment of the C-RO model nomogram
We developed the C-RO model nomogram (Fig.  6) that 
integrated the two independent clinical factors and four 
radiomics features.

Table 3 Comparisons of radiomics features between the training, testing and validation cohorts
Different models Training cohort (n = 72) Testing cohort (n = 32) Validation cohort (n = 26)

Effec-
tive 
treat-
ment 
cohort

Ineffective 
treatment 
cohort

p 
value

Effective 
treatment 
cohort

Ineffective 
treatment 
cohort

p 
value

Effective 
treatment 
cohort

Ineffective 
treatment 
cohort

p 
value

T-RO stdDeviation -0.166 
(-1.096, 
0.616)

0.584 ± 1.089 0.017* 0.272 ± 1.127 1.357 ± 0.854 0.035* 0.054 ± 1.068 -
0.227 ± 0.844

0.590

Inertia_AllDirection_offset7_SD -0.266 
(-0.289, 
-0.243)

-0.251 
(-0.266,0.949)

0.037* -0.212 
(-0.298, 
0.315)

-0.009 
(-0.266, 
0.971)

0.356 -0.314 
(-0.314, 
-0.233)

-0.114 
(-0.332, 
2.415)

0.477

P-RO Inertia_angle0_offset1 -0.389 
(-0.797, 
0.315)

0.731 ± 1.344 0.011* -
0.330 ± 1.063

0.747 ± 1.173 0.036* -
0.816 ± 0.949

0.343 ± 1.345 0.414

LongRunLowGreyLevelEmpha-
sis_angle45_offset4

-0.307 
(-0.513, 
-0.142)

-0.208(-
0.396,1.065)

0.039* -0.320 
(-0.505, 
-0.121)

-0.374 
(-0.461, 
0.753)

0.772 -0.253 
(-0.918, 
0.314)

0.192 ± 0.887 0.454

*p < 0.05 (two-sided) was considered statistically significant

Table 4 Comparisons of models in the training, testing and validation datasets
Different 
models

Training cohort (n = 72) Testing cohort (n = 32) Validation cohort (n = 26)
Sensitivity Specificity AUC (95% CI) Sensitivity Specificity AUC (95% CI) Sen-

sitiv-
ity

Spec-
ific-
ity

AUC (95% CI)

Clinical 91.2% 73.3% 0.839(0.718,0.942) 76.9% 50.0% 0.750(0.563,0.917) 90.5% 60.0% 0.724(0.515,0.879)

T-RO 80.7% 66.7% 0.784(0.647,0.901) 61.5% 83.3% 0.763(0.607,0.900) 76.2% 60.0% 0.600(0.391,0.785)

P-RO 86.0% 53.3% 0.740(0.589,0.873) 80.8% 33.3% 0.756(0.568,0.929) 61.9% 80.0% 0.629(0.418,0.808)

TP-RO 87.7% 73.3% 0.836(0.698,0.951) 69.2% 50.0% 0.731(0.552,0.885) 76.2% 60.0% 0.686(0.475,0.852)

C-RO 91.2% 80.0% 0.896(0.800,0.969) 73.1% 83.3% 0.801(0.650,0.923) 85.7% 80.0% 0.790(0.587,0.924)
AUC = area under curve

Fig. 5 Receiver operating characteristic (ROC) curves of the four models in the training cohort (a) and validation cohort (b). The blue, green, and orange 
solid lines represent the Clinical, T-RO, and P-RO models, respectively. The green and purple dotted line represent the TP-RO and C-RO models. In the 
training cohort, the P-RO and C-RO models were considered statistically significant (p = 0.036)
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The Nomo-score was calculated using the follow-
ing formula: Nomo-score = 2.1625 − 0.0650 × Tumor 
Size + 0.6976 × Minimum GGO margin depth + 0.9617 
× Rad-score. In the training, testing, and validation 
cohort, the Nomo-score of the C-RO model was higher 
in the effective treatment cohort than in the ineffec-
tive treatment cohort (p < 0.05, Fig. 7). The C-RO model 
nomogram provided the highest C-index of 0.896 (95% 
CI, 0.800–0.969) in the training cohort, 0.801 (95% CI, 
0.650–0.923) in the testing cohort, and 0.790 (95% CI, 
0.587–0.924) in the validation cohort (Fig.  5).The sensi-
tivity and specificity of the C-RO model performed well 
in the training, testing and validation cohorts. Figure  5 
show showed the ROC curves.

In the training, testing, and validation cohorts, the 
calibration curves of the C-RO model nomogram dem-
onstrated good agreement between observed actual 
response probabilities and nomogram projected prob-
abilities (Fig. 8a, b and c, respectively). The Hosmer-Lem-
eshow test yielded nonsignificant differences (p = 0.856), 
suggesting that there was no departure from a perfect 
fit. The DCA for the radiomics nomogram in the train-
ing, testing and validation cohorts showed a superior net 
clinical benefit of the C-RO model over other models 
(Fig. 8d, e and f, respectively).

Fig. 7 Scatter Chart of Nomo-score in C-RO model. (a) Training cohort. (b) Testing cohort. (c) validation cohort

 

Fig. 6 Nomogram of the C-RO model. Size = Tumor size. MinimalGGO = Minimum GGO margin depth
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The role of radiomics features in the prediction of survival
In the survival study, the median duration of follow-up 
was 16.3 months (range, 2.9 to 62.4), the median progres-
sion-free survival was 13.6 months (95% CI, 3.0 to 51.9). 
The best cutoff point based on maximizing the sum of 
sensitivity and specificity was a Nomo-score of 0.759 in 
the C-RO model. The log-rank test was used to select the 
Nomo-score with significance, and the best cutoff value 
was used to categorize patients into high-risk (Nomo-
score of C-RO model below than cutoff value) and low-
risk (Nomo-score of C-RO model higher than cutoff 
value) categories for PFS. PFS was considerably longer in 
low-risk group than in high-risk group (Fig. 9).

Discussion
The aim of this study was to evaluate tumoral and peritu-
moral radiomics-based models and their potential to pre-
dict the early efficacy of MWA in malignant lung tumors. 
The model constructed by integrating radiomics features 

extracted from the ROI in tumoral and peritumoral areas 
and clinical risk factors showed a stable and excellent 
predictive performance, providing a non-invasive and 
repeatable method to evaluate the outcomes of MWA. 
The Nomo-score was also helpful for the analysis of local 
progression.

Tumors may extend 6–8  mm into the adjacent lung 
parenchyma, which suggests that the ablation site should 
be at least 1 cm larger than the lesion [26]. However, this 
area is seldom visible to the naked eye on ordinary CT 
images. Therefore, we need to explore tumoral and peri-
tumoral ROI to predict early efficacy after MWA. In this 
work, we identified radiomics features on tumoral and 
peritumoral CT images that were capable of predicting 
the early efficacy of MWA for malignant lung tumors 
with high sensitivity. In addition, we developed, tested 
and validated the C-TO model, which combined clini-
cal risk factors with radiomics features from tumoral 
and peritumoral CT images. The model showed good 

Fig. 9 The survival curve plotted for patients with Nomo-score above or below a Nomo-score threshold of the C-RO model in the training cohort (a) 
testing cohort (b) and validation cohort (c). The red line represents the high-risk group; thegreen line represents the low-risk group

 

Fig. 8 Calibration curves and decision curve analysis (DCA) of the C-RO model. Calibration curves in the training cohort (a), testing cohort (b) and valida-
tion cohort (c). DCA in the training cohort (d), testing cohort (e) and validation cohort (f). The green, blue, and red lines represent the Clinical, TP-RO, and 
C-RO models, respectively
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sensitivity and specificity for predicting the early effi-
cacy of MWA. Akinci et al. [27] found that a combina-
tion of the tumoral and peritumoral radiomics signature 
with the TNM staging system outperformed TNM stag-
ing alone for individualized recurrence risk estimation in 
patients with surgically treated NSCLC. In this study, the 
AUC of the C-RO model was 0.896 (95% CI 0.800–0.969), 
which should enable clinicians to be more objective and 
personalized in evaluating the early efficacy of MWA in 
patients with malignant lung tumors and to design treat-
ment strategies.

The radiomics of ROI extracted from tumor included 
stdDeviation and Inertia_AllDirection_offset7_SD. The 
stdDeviation is the characteristic of histogram param-
eters. It was reported that stdDeviation is correlated with 
tumor heterogeneity in lung adenocarcinoma [28]. In 
the training, testing and validation cohorts in this study, 
stdDeviation of the ineffective treatment was higher 
than that of the effective treatment (p < 0.05), which may 
further reflect that the tumor lesions in the ineffective 
treatment had higher heterogeneity after MWA. Inertia 
belongs to the gray level co-occurrence matrix, which 
reflects the sharpness of the image and the depth of the 
texture grooves. The low value of grooves results in low 
contrast and blurred images. Deng et al. [29] studied the 
blood supply of early lung adenocarcinomas in mice and 
the tumor - supplying vessel relationship. They found 
weak negative correlations between the solid component 
size of the tumor and inertia. In this study, we found that 
the inertia of the effective treatment was lower than that 
of the ineffective treatment in the training, testing and 
validation cohorts; this suggests that the tumoral images 
after MWA were fuzzy and the lesion was completely 
ablated, which was beneficial to the prognosis of patients. 
The radiomics of ROI extracted from peritumor included 
Inertia_angle0_offset1 and LongRunLowGreyLevelEm-
phasis_angle45_offset4. Inertia was higher in the ineffec-
tive treatment, which prompts higher image resolution, 
and the result demonstrated that ineffective treatment 
had incomplete ablation and residual micro-infiltrated 
tissue of the malignant lung tumor after MWA. Lon-
gRunLowGreyLevelEmphasis measures the simultane-
ous distribution of long run and low grey values. Martens 
et al. [30] found that LongRunLowGreyLevelEmpha-
sis, as one of the radiomics features based on PET-CT, 
could predict the prognosis of patients with head and 
neck squamous cell carcinoma, and the larger the value, 
the more heterogeneous the tumor. In the early stage of 
malignant lung tumors after MWA, the GGO around the 
tumor is mainly composed of “two layers” indicating dif-
ferent pathological changes. The inner layer represents 
coagulative necrosis caused by acute thermal damage to 
micro-infiltrated tumor tissue; the outer layer represents 
hyperemia and the inflammatory reaction of normal lung 

tissue. The boundary between the two layers is unclear 
and extends into each layer. In this study, the value of 
LongRunLowGreyLevelEmphasis was higher for ineffec-
tive treatment than for effective treatment, this suggests 
that the peritumor heterogeneity of the inner layer was 
still present and was not completely thermally ablated.

We evaluated the clinical risk factors and performed 
radiological analysis. The results were consistent with 
previous findings that tumor size and minimum GGO 
margin depth are independent variables associated with 
the early efficacy of MWA in lung malignant tumors. 
Patients with large tumors have a lower survival rate 
after MWA than those with small tumors [31–33], and 
the tumor size threshold is 2–3  cm. In this study, the 
mean tumor sizes associated with effective and ineffec-
tive treatment were 12.5 and 20.1 mm, respectively; this 
was consistent with previous reports. The minimum 
GGO margin depth is another important prognostic fac-
tor. In this study, the minimum GGO margin depth in 
the effective treatment was larger than that in the inef-
fective treatment ( 5.93 vs. 4.78, p<0.01), indicating that 
MWA could cover tumors effectively. A study [34] by De 
Baere found that the ratio of post-treatment GGO to the 
pre-treatment tumor area is an indicator of the efficacy of 
treatment. A ratio > 4 indicates that the complete ablation 
rate at 4 months is 96% and the success rate is 61%. In 
this study, the ratio was larger in the effective treatment 
than in the ineffective treatment, although the specific 
values need to be further explored.

The survival curve provided an intuitive way to evalu-
ate the early efficacy of MWA in lung tumor patients, 
which were divided into high-risk and low-risk groups. 
The survival curves of patients above the Nomo-score 
threshold in the C-RO model were considerably differ-
ent from those below the Nomo-score threshold in the 
training, testing and validation cohorts. The survival 
curve suggests that patient survival depends on a com-
bination of tumoral and peritumoral heterogeneity and 
radiomics manifestations of disease progression after 
MWA. Although the current study was limited by a rela-
tively small patient cohort, it showed the potential utility 
of radiomics features for survival modeling with specific 
features and threshold values determined by the patient 
cohort.

The present study had several limitations. First, this 
was a retrospective study conducted at a single center, 
and the inherent bias may have affected the results. We 
recommend complementing our database with prospec-
tive validation using bigger cohorts from additional loca-
tions. Second, the small sample size made it difficult to 
conduct subgroup analysis in patients with primary and 
metastatic tumors; it was also difficult to analyze sub-
groups of patients with or without systematic treat-
ment, additional studies should be performed to conduct 
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subgroup analysis in the future. Although this study pro-
vided initial evidence that the T-RO, P-RO, TP-RO, and 
C-RO models can help predict the early efficacy of MWA 
in malignant lung tumors, additional prospective studies 
should be performed to validate the present results.

Conclusion
Differences in radiomics features predicted the early 
efficacy of MWA in malignant lung tumor patients. The 
T-RO, P-RO, TP-RO, and C-RO models provided prog-
nostic information for MWA patients and may serve to 
design treatment strategies. The C-RO model was the 
most effective model. Additionally, the best cutoff value 
of the C-RO model provided statistically significant dis-
crimination between the low-risk group and high-risk 
group of the survival curve, suggesting survival trends 
correlated with radiomics values. Such quantitative 
radiomics prognostic models of malignant lung tumors 
may be helpful in precision medicine and affect the 
design of treatment strategies.
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