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Abstract 

Background The advent of next‑generation computed tomography (CT)‑ and magnetic resonance imaging (MRI) 
opened many new perspectives in the evaluation of tumor characteristics. An increasing body of evidence sug‑
gests the incorporation of quantitative imaging biomarkers into clinical decision‑making to provide mineable tissue 
information. The present study sought to evaluate the diagnostic and predictive value of a multiparametric approach 
involving radiomics texture analysis, dual‑energy CT‑derived iodine concentration (DECT‑IC), and diffusion‑weighted 
MRI (DWI) in participants with histologically proven pancreatic cancer.

Methods In this study, a total of 143 participants (63 years ± 13, 48 females) who underwent third‑generation dual‑
source DECT and DWI between November 2014 and October 2022 were included. Among these, 83 received a final 
diagnosis of pancreatic cancer, 20 had pancreatitis, and 40 had no evidence of pancreatic pathologies. Data compari‑
sons were performed using chi‑square statistic tests, one‑way ANOVA, or two‑tailed Student’s t‑test. For the assess‑
ment of the association of texture features with overall survival, receiver operating characteristics analysis and Cox 
regression tests were used.

Results Malignant pancreatic tissue differed significantly from normal or inflamed tissue regarding radiomics features 
(overall P < .001, respectively) and iodine uptake (overall P < .001, respectively). The performance for the distinction of 
malignant from normal or inflamed pancreatic tissue ranged between an AUC of ≥ 0.995 (95% CI, 0.955–1.0; P < .001) 
for radiomics features, ≥ 0.852 (95% CI, 0.767–0.914; P < .001) for DECT‑IC, and ≥ 0.690 (95% CI, 0.587–0.780; P = .01) 
for DWI, respectively. During a follow‑up of 14 ± 12 months (range, 10–44 months), the multiparametric approach 
showed a moderate prognostic power to predict all‑cause mortality (c‑index = 0.778 [95% CI, 0.697–0.864], P = .01).

Conclusions Our reported multiparametric approach allowed for accurate discrimination of pancreatic cancer and 
revealed great potential to provide independent prognostic information on all‑cause mortality.
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Background
Despite new diagnostic and therapeutic approaches 
aiming at improving survival, the prognosis of 
patients with pancreatic cancer remains poor with a 
dismal 5-year survival rate of less than 5% [1]. Even 
after surgical resection, pancreatic cancer tends to 
reoccur with a 5-year survival of only 25% in surgi-
cally treated patients [2]. Therefore, early detection of 
pancreatic cancer seems of tremendous importance 
to avoid poor outcomes. Considering their frequently 
subtle imaging manifestation due to small and isoat-
tenuating appearance, early parenchymal changes 
are often misdiagnosed or even missed in computed 
tomography (CT) or magnetic resonance imaging 
(MRI) [3].

Several studies have shown that long-term survival 
is affected by a multitude of different factors includ-
ing tumor size, presence of metastasis, heterogene-
ity, or histologic differentiation of malignant tissue 
[4–7]. Recently published studies revealed strong 
correlations of intratumoral heterogeneity in malig-
nant pancreatic lesions with tumor recurrence and 
survival [8–10]. Tumor masses can be quantified 
non-invasively by using dual-energy computed tomog-
raphy iodine concentration (DECT-IC) [11, 12] or dif-
fusion-weighted magnetic resonance imaging (DWI) 
based on the random Brownian motion of water mol-
ecules within tissues [13]. Radiomics is a quantitative 
approach that poses the potential to extract a myriad 
of texture features from medical imaging by using 
miscellaneous mathematical extraction algorithms. 
This rapidly growing discipline aims to establish imag-
ing biomarkers that can assist in risk stratification and 
outcome prediction.

Given the value of radiomics to add essential infor-
mation to CT and MRI [13–17], we hypothesized that 
a multiparametric approach involving all three tech-
niques might be superior to every single diagnostic tool 
in distinguishing malignant from normal or inflamed 
parenchyma and in predicting outcomes.

Methods
The present study was approved by the local institu-
tional review board. Informed consent was obtained 
from all enrolled participants following the Declaration 
of Helsinki.

Study population
A total of 174 participants with unspecific abdominal 
pain who had undergone clinically indicated third-
generation dual-source DECT and 3-Tesla MRI at the 
University Hospital Frankfurt (Frankfurt am Main, 
Hesse, Germany) between November 2014 and Octo-
ber 2022 were initially considered for study inclusion. 
To limit possible distortion of statistics between DECT 
and MRI, we included only data from patients with an 
examination interval of up to 14 days between the two 
examinations. Indications to perform an additional 
MRI scan to DECT included 1) the need for a better 
characterization  of tumor tissue, e. g. the infiltration 
into adjacent structures, 2) short-term follow-up with 
concerns about ionizing radiation for another CT imag-
ing, and 3) suboptimal CT findings with a high clinical 
suspicion of pancreatic cancer. Exclusion criteria were 
artifacts (n = 7) and previous local surgery (n = 24). The 
final study cohort consisted of 143 patients, of whom 
83 received a final diagnosis of histologically proven 
pancreatic cancer (12 of 83 patients were prospec-
tively enrolled for data validation purposes). Another 
40 participants had normal pancreatic parenchyma and 
served as the comparative group, including individuals 
with gastritis (n = 16), gastroesophageal reflux disease 
(n = 11), constipation (n = 6), gastroenteritis (n = 5), 
or inflammatory bowel disease (n = 2). 20 participants 
were finally diagnosed with pancreatitis. For retrospec-
tive analysis, suitable patients were identified in the 
picture archiving and communication system (Centric-
ity 4.2; GE Healthcare, Chicago, USA) by searching for 
the following terms: ‘pancreatic cancer’, ‘pancreatitis’, 
‘normal pancreatic parenchyma’, ‘pancreatic adenocar-
cinoma’, and ‘pancreatic neuroendocrine tumor’. Exclu-
sion criteria were previous tumor resection, imaging 
artifacts, stent material, or pancreatolithiasis. Figure 1 
illustrates the selection process of participants in this 
study.

Standard of reference
The final adjudicated diagnosis was based on the histo-
logical confirmation in all cases of pancreatic cancer, as 
well as on clinical and imaging findings at discharge. All 
data were extracted from medical reports and multidis-
ciplinary tumor board meetings. Tumors were graded 
according to the  8th edition of TNM classification (clin-
ical and pathological) [18]. The primary endpoint was 
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all-cause mortality. Follow-up was performed by thor-
oughly checking outcome information including medi-
cal reports and external files from referring hospitals. 
Patient outcome was also collected by phone interviews 
and questionnaires.

Dual‑energy CT protocol
All CT examinations were performed on a third-gen-
eration dual-source DECT scanner equipped with a 
Somatom Force unit (Siemens Healthineers, Forch-
heim,  Bavaria, Germany). The examination parameters 
were as follows: tube A, 90 kVp and 220 mAs; tube B, 
Sn150 kVp [0.64  mm tin filter] and 138 mAs; collima-
tion of 2 × 192 × 0.6  mm; rotation time of 0.5  s; pitch 
of 0.6. Real-time automatic tube current modulation 
was applied (CARE Dose 4D; Siemens Healthineers). 
Images were reconstructed with a slice thickness of 
2 mm in 2 mm intervals using advanced modeled itera-
tive reconstruction (ADMIRE, Siemens Healthineers) 
with a medium smooth reconstruction kernel (Br40). A 

nonionic intravenous contrast medium was administered 
(Imeron 400, Bracco, Milan, Italy) at a flow rate of 3 mL/
second (dose of 1.2 mL/kg body weight).

All examinations consisted of a standardized triphasic 
pancreatic mass protocol, including a noncontrast, pan-
creatic arterial (PAP), and portal venous phase (PVP). 
Applying bolus triggering, PAP was acquired with a 5-s 
delay after aortic threshold enhancement of 100 HU. 
Given greater contrast ratios between tumor and adja-
cent parenchyma, PAP scans were used consistently for 
texture analysis.

Image segmentation and analysis
Two experienced radiologists (M.H.A. and V.K. with 6 
and 4  years of radiomics experience, respectively) per-
formed image segmentation and analysis. After the 
upload of CT datasets into 3D slicer software (3D slicer 
4.6.2., Harvard University, Cambridge, USA), each seg-
mentation was accomplished by a semi-automatic 
method for pancreatic structure assessment using 
the interactive segmentation algorithm GrowCut, as 

Fig. 1 Flowchart of patient inclusion
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previously described [19–21]. After data upload, the first 
reliable 3D segmentation model of the pancreatic for-
mation was obtained by adding a small subset of label 
points with the automated reconstruction of the remain-
ing image. The algorithm iteratively labeled all points 
using a weighted similarity score comprising all pixels 
in the adjacent tissue. After successful segmentation and 
visual inspection, areas with artifacts or calcifications 
were manually removed. Case examples are illustrated in 
Figs. 2 and 3.

Each segmentation was reviewed by one experienced 
radiologist (S.S.M., 6  years of experience in radiomics 
analysis). If the reviewer disagreed with the final result, 
the segmentation process was repeated under corrected 
conditions. All radiologists were blinded to clinical, labo-
ratory, and histological data.

PyRadiomics extension package for 3D slicer software 
(Version 5.1.0–2022-05–20) was used to extract radi-
omics features from final segmentations, resulting in 
a total of 107 features per segmentation [22]. Extracted 

features could be classified into seven categories as fol-
lows: Gray-Level Dependence Matrix (GLDM), Gray-
Level Co-Occurrence Matrix (GLCM), Grey-Level Run 
Length Matrix (GLRLM), Gray-Level Size Zone Matrix 
(GLSZM), Neighboring Gray Tone Difference Matrix 
(NGTDM), Shape, and First Order.

For DECT-IC and fat fraction assessment, three circu-
lar region of interests (ROIs) of 1  cm2 per patient were 
placed manually within malignant, inflamed, or normal 
pancreatic tissue, strictly excluding adjacent vessels, calci-
fications, fat, or cystic formations. Fat quantification was 
performed using three-material decomposition with fat, 
pancreatic tissue, and iodine as the basis triplet. A com-
mercially available material decomposition algorithm 
(Syngo vB15, Siemens Healthineers) available for research 
was used for the quantification of iodine uptake and fat.

The hardware platform for image processing was a 
standard computer (Apple MacBook Pro 16 “, M1 Pro 
CPU, 32 GB RAM, macOS Monterey 12.3.1., Apple Inc., 
Cupertino, USA).

Fig. 2 Case of a 50‑year‑old female who was admitted to the emergency department with severe abdominal pain radiating to the back and a 
weight loss of 12 kg. Diffuse pain over the abdominal area was registered during the physical examination. After the detection of a space‑occupying 
pancreatic mass lesion by ultrasound, dual‑energy computed tomography was performed. Transversal, coronal, and sagittal planes of 
contrast‑enhanced scans (A, C, E) showed a mass of the pancreatic body which was highly suspicious of cancer. Histopathological examination 
revealed a pancreatic ductal adenocarcinoma. The right column shows the tumor outlined with a semi‑automatic delineation method in yellow (B, 
D, F). A three‑dimensional illustration of the tumor is displayed at the center of the image (G)
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MRI scan protocol
All MR examinations were performed on a 3-Tesla MRI 
system (Magnetom Prisma, Siemens Healthineers) using 
a multichannel body surface coil. The protocol included 
a diffusion-weighted sequence with the following scan 
parameters: repetition time/echo time (msec), 6000/52; 
slice thickness, 4 mm; intersection gap, 4.8 mm; matrix, 
280 × 248; flip angle, 90°. Apparent diffusion coefficients 
(ADC) were calculated with dedicated software (Syngo 
vB15, Siemens Healthineers) using b-values of 1000  s/
mm2. Images were acquired in axial, coronal, and sagit-
tal planes. For quantitative analysis of ADC maps, three 
circular ROIs of 1.5  cm2 were placed in suspected target 
lesions.

Quantitative assessment of radiomics features
Initial analysis of datasets was performed by applying 
Euclidean distance matrices and low dimensional embed-
ding with t-distributed stochastic neighbor embedding 
to investigate cluster distributions. All acquired features 
were randomly divided into training (60%) and test (40%) 

datasets, potentially resulting in significant variability 
between groups.

All analyses were performed using open-source pack-
ages in Python 3.9.13. and MedCalc (Version 20.123; 
Ostend, Belgium) [23]. The Quality Radiomics Score (1.0) 
yielded a value of 24 (https:// radio mics. world/ rqs) [24, 25].

Statistical analysis
Analyses were performed with MedCalc (Version 
20.123). The normality of datasets was evaluated using 
the Kolmogorov–Smirnov test. Normally distributed val-
ues were illustrated as mean ± standard deviation (SD), 
otherwise as median with interquartile range (IQR). A 
P value < 0.05 was considered statistically significant.

Comparisons between categorical and continuous 
variables were performed using chi-square statistic 
tests, one-way ANOVA, or two-tailed Student’s t-test, 
where appropriate. The Cox proportional hazards model 
was used to determine independent factors of CT tex-
ture analysis and DWI on overall survival. Overall sur-
vival was defined as the time from imaging until either 

Fig. 3 Case example of a 55‑year‑old male suffering from beltlike abdominal pain with metabolic acidosis (pH 7.3), hypokalemia (2.8 mmol/l), 
weight loss, and diarrhea for the past three months. After induced infusion therapy to compensate for the electrolyte imbalance, dual‑energy 
computed tomography was performed, showing a hypodense mass of approximately 3.3 × 3.4 × 6.6 cm located in the pancreatic tail with 
occasional calcifications and finally proven ductal adenocarcinoma (A, C, E). Additionally to tumor segmentation in different planes (B, D, F), the 
pancreatic mass is also shown in 3D (G)

https://radiomics.world/rqs
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death from any cause or the date that the patient was 
last known to be alive. All participants were followed 
up from the time of initial diagnosis. Multivariate Cox 
proportional hazards models were created by adjust-
ing significant univariate prognostic parameters for 
clinically important confounders, such as sex, age, and 
tumor size. Findings from the Cox proportional hazards 
models were reported as hazard ratios with correspond-
ing 95% confidence intervals (CIs). Receiver operating 
characteristic (ROC) curve analysis was performed to 

compare the accuracy of survival models. Areas under 
the ROC curves (AUCs) were measured for perfor-
mance assessment of each model in the evaluation of tis-
sue discrimination and survival. The reproducibility of 
measurements was evaluated by calculating intra-class 
correlation coefficients (ICC) for each radiomics feature. 
In this context, values below 0.5 indicate poor reliability, 
between 0.5 and 0.75 moderate reliability, between 0.75 
and 0.9 good reliability, and any value above 0.9 excellent 
reliability [26].

Table 1 Baseline characteristics of the study population (significant P values are written in bold)

Abbreviations: BMI Body mass index, SD Standard deviation

Variables
- n (%) or mean (± SD)

Pancreatic cancer
(n = 83)

Normal parenchyma
(n = 40)

Pancreatitis
(n = 20)

P value

Demographics
 Overall age (years) 65 ± 11 64 ± 12 49 ± 16  < 0.0001
 Men (years) 65 ± 12 63 ± 11 48 ± 14  < 0.0001
 Women (years) 66 ± 10 64 ± 14 53 ± 20  < 0.0001
 Male sex (n) 52 (63%) 29 (72%) 14 (70%)

 Female sex (n) 31 (37%) 11 (28%) 6 (30%)

 BMI (kg/m2) 26 ± 5 23 ± 4 24 ± 4 0.0008
Vital signs
 Heart rate (bpm) 79 ± 16 77 ± 17 81 ± 20 0.4748

 Systolic blood pressure (mmHg) 136 ± 23 127 ± 18 122 ± 21 0.0403
 Diastolic blood pressure (mmHg) 86 ± 13 80 ± 9 81 ± 6 0.0086
 Saturation of peripheral oxygen (%) 98 ± 3 99 ± 2 98 ± 2 0.8040

 Temperature (°C) 36.8 ± 0.6 36.7 ± 0.4 37.8 ± 0.6 0.6070

T stage
 T1 (n) 5 (6%) ‑ ‑

 T2 (n) 26 (31%) ‑ ‑

 T3 (n) 11 (13%) ‑ ‑

 T4 (n) 41 (50%) ‑ ‑

N stage
 N0 (n) 13 (16%) ‑ ‑

 N1 (n) 37 (45%) ‑ ‑

 N2 (n) 33 (39%) ‑ ‑

M stage
 M0 (n) 38 (46%) ‑ ‑

 M1 (n) 45 (54%) ‑ ‑

Lymphovascular invasion (n) 64 (77%) ‑ ‑

Perineural invasion (n) 27 (33%) ‑ ‑

Risk factors
 Arterial hypertension (n) 45 (54%) 8 (20%) 5 (25%)

 Smoking (n) 21 (25%) 10 (25%) 7 (35%)

 Obesity (n) 14 (17%) 4 (10%) 2 (10%)

 Alcohol (n) 12 (15%) ‑ 5 (25%)

 Hypercholesterolemia (n) 9 (11%) 5 (13%) 5 (25%)

 Diabetes mellitus (n) 7 (8%) 4 (10%) 3 (15%)

 Chronic pancreatitis (n) 4 (5%) ‑ 4 (20%)

 Family history (n) 3 (4%) 5 (13%) ‑
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Results
A total of 83 participants (65 ± 11  years; range, 
34–87  years) with histologically proven pancreatic can-
cer were included, consisting of 52 men and 31 women 
(Table 1). Among these, 79 participants (95%) were diag-
nosed with pancreatic ductal adenocarcinoma, 3 with 
pancreatic neuroendocrine tumor (4%), and 1 with col-
loid carcinoma (1%). The most common localization was 
the pancreatic head, representing 65% of cases, followed 
by the pancreatic body (22%) and tail (13%). Two case 
examples of a large pancreatic mass lesion with ductal 
obstruction are presented in Figs.  4 and 5. The overall 
tumoral extension was 1.8 ± 2.9  cm3 (range, 1.1–8.1  cm3).

According to the T stage classification, 5 participants 
(6%) had T1 stage, 26 (31%) T2, 11 (13%) T3, and 41 
(50%) T4 stage. 13 participants (16%) showed no evi-
dence of lymph node metastasis (N0), 37 participants 
(45%) had N1, and 33 (39%) N2 stage. A total of 45 par-
ticipants (54%) had distant metastasis (M1).

Participants were followed up over 14 ± 12  months 
(range, 10–44 months).

Comparative groups with normal or inflamed pancreatic 
parenchyma
A total of 40 participants (64 ± 12  years; range, 
33–84 years) served as the comparative group without 

Fig. 4 Illustration of a 74‑year‑old female who presented with typical symptoms of pancreatic cancer, having changes in her appetite, weight 
loss, and jaundice. Carbohydrate antigen 19–9 (CA 19–9) was considerably increased at approximately 11,000 U/mL, pointing towards advanced 
disease. After the initial diagnostic workup, the patient underwent dual‑energy computed tomography (A, B) that identified a large pancreatic mass 
with consecutive ductal obstruction. One month later additional magnetic resonance imaging with T2‑weighted sequences (C, D) confirmed the 
diagnosis and showed associated diffusion restriction in apparent diffusion coefficient maps (E) and diffusion‑weighted imaging (F). Histopathology 
revealed the presence of pancreatic ductal adenocarcinoma

Fig. 5 Images of a 61‑year‑old male who was referred to the gastrointestinal outpatient clinic with ten months’ history of weight loss. More 
recently, he had developed epigastric pain, abdominal distension, and night sweats. His medication contained only pantoprazole and 
occasionally paracetamol. He drank half a liter wine every evening and smoked 20 cigarettes per day. A large mass in the tail of pancreas has been 
detected in the dual‑energy computed tomography scan (A, B). The histopathological assessment revealed the presence of a pancreatic ductal 
adenocarcinoma
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evidence of pancreatic pathologies. Another 20 partici-
pants (49 ± 16 years; range, 22–78 years) received acute 
biliary pancreatitis as their final diagnosis.

Quantitative imaging characteristics
CT attenuation values of pancreatic tumor tissue 
(29.7 ± 15.3 HU) differed significantly from normal 
pancreatic parenchyma (37.4 ± 8.7 HU, P = 0.004) but 
not from inflamed pancreatic parenchyma (34.5 ± 11.2 
HU, P = 0.19). HU values of neuroendocrine tumors 
(35.2 ± 6.3 HU) were not increased compared to pan-
creatic adenocarcinoma (29.5 ± 15.4 HU, P = 0.53). 
Fat fraction was significantly different between pan-
creatic cancer (16.5 ± 12.5%) and normal parenchyma 
(11.1 ± 4.0%, P = 0.008) without differences com-
pared to inflamed parenchyma (13.0 ± 7.2%, P = 0.23). 
Iodine density of malignant tissue (0.8 ± 0.6  mg/mL) 
showed significant differences from both normal 
(2.6 ± 0.8  mg/mL, P < 0.001) and inflamed pancreatic 
tissue (1.8 ± 0.7  mg/mL, P < 0.001). Regarding DWI 
findings, ADC values from malignant pancreatic tissue 
(1.284 ± 0.245  mm2/s) were lower than those measured 
of normal parenchyma (1.676 ± 0.249  mm2/s, P < 0.001) 
and higher than those of inflamed tissue (1.134 ± 0.126 
 mm2/s, P = 0.01). Quantitative values of DECT vari-
ables and ADC mapping are presents in Table 2.

Values of malignant pancreatic tissue differed signifi-
cantly from normal and inflamed tissue regarding first-
order radiomics features (P < 0.001, respectively), GLCM 
(P < 0.001, respectively), GLDM (P < 0.001, respectively), 
GLRLM (P < 0.001, respectively), GLSZM (P < 0.001, 
respectively), NGTDM (P < 0.001, respectively), and 
shape (P < 0.001, respectively). ICC analysis was high 
to excellent for all feature classes, ranging from 0.84 
(GLCM) to 0.98 (NGTDM). A list of extracted texture 
parameters is provided in Supplemental Tables 1 and 2.

The mean segmentation time using 3D slicer seg-
mentation software was 8 min (range, 6–11 min).

Diagnostic performance of CT‑, MRI‑, and radiomics 
features
Compared to non-cancer participants, the overall diagnos-
tic performance of CT radiomics features, DECT-IC, and 
DWI to differentiate malignant parenchyma from normal 
pancreatic tissue was excellent (AUC 0.999, 95% CI, 0.962–
1.0; P < 0.001). More specifically, the AUCs for radiomics 
features, DECT-IC, and DWI were 0.999 (95% CI, 0.969–
1.0; P < 0.001), 0.974 (95% CI, 0.928–0.994; P < 0.001) and 
0.862 (95% CI, 0.785–0.919; P < 0.001), respectively. Positive 
and negative predictive values are illustrated in Supplemen-
tal Table 1. If comparing cancer participants with the com-
parative normal group showing unspecific symptoms and 
normal pancreatic parenchyma, maximum PPV, as com-
puted by using C-statistics, was 99% (95% CI, 92–100%) 
comprising all CT texture radiomics features, 96% (95% 
CI, 89–99%) for DECT-IC, 86% (95% CI, 79–91%) for 
DWI, and 99% (95% CI, 97–100%) for all three techniques 
together. Bivariate correlation analysis showed a significant 
correlation of radiomics features with DECT-IC (r = 0.74, 
95% CI, 0.65–0.81; P < 0.001), fat fraction (r = 0.23, 95% CI, 
0.05–0.39; P = 0.01), and mean attenuation (r = 0.24, 95% 
CI, 0.07–0.40; P = 0.007) when comprising all subjects with 
cancer. The diagnostic performance of all three techniques 
to discriminate between tumorous and normal pancreatic 
parenchyma was not affected after dichotomization of par-
ticipants according to age above (≥ 50  years) and below 
50 years (interaction P = 0.21).

The performance to distinguish between malignant 
and inflamed pancreatic tissue ranged between an AUC 
of 0.995 (95% CI, 0.955–1.0; P < 0.001) for radiomics fea-
tures, 0.852 (95% CI, 0.767–0.914; P < 0.001) for DECT-
IC, and 0.690 (95% CI, 0.587–0.780; P = 0.001) for DWI, 

Table 2 Quantitative evaluation of CT iodine uptake and ADC mapping including patients with pancreatic cancer, normal pancreatic 
tissue, and pancreatitis (significant P values are written in bold)

Abbreviations: ADC Apparent diffusion coefficient, DECT Dual-energy CT, HU Hounsfield Unit, SD Standard deviation

Variables
- mean (± SD)

Pancreatic cancer
(n = 83)

Normal parenchyma
(n = 40)

Pancreatitis
(n = 20)

P value

DECT
Mean attenuation
(HU)

29.7 ± 15.3 37.4 ± 8.7 34.5 ± 11.2 0.0100

Iodine uptake
(mg/mL)

0.8 ± 0.6 2.6 ± 0.8 1.8 ± 0.7  < 0.0001

Fat fraction
(%)

16.5 ± 12.5 11.1 ± 4.0 13.0 ± 7.2 0.0172

MRI ADC mapping
ADC (10−3 mm2/s) 1.284 ± 0.245 1.676 ± 0.249 1.134 ± 0.126  < 0.0001
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respectively (Fig.  6). Overall AUC was 0.996 (95% CI, 
0.894–1.0; P < 0.001) (Supplemental Table  2). The addi-
tion of CT texture features to DWI and iodine density 
measurements significantly increased the tumor detec-
tion rate to a diagnostic accuracy of 100%. The AUC 
improved by 0.307 (SE 0.056, P < 0.001) and by 0.216 (SE 
0.061, P = 0.001), respectively, if adding radiomics fea-
tures and iodine uptake to ADC.

The discriminative power of radiomics, DECT-IC, and 
DWI to differentiate malignant from normal pancreatic 
parenchyma was higher compared to the performance 
in malignant versus inflamed pancreatic parenchyma 
(P ≤ 0.02) (Supplemental Table 3).

Prognostic value of imaging features in predicting 
all‑cause mortality
During a follow-up of 14 ± 12  months (range, 
10–44  months), a total of 51 deaths (61%) occurred 
among cancer patients. In Cox regression, radiomics fea-
tures in their entirety were found to provide independ-
ent prognostic information for death (c-index = 0.709 
[95% CI, 0.594–0.823], P = 0.02), even after adjustment 
for potential confounders that had been identified in 
the univariate analysis (Table 3). DECT-IC and DWI did 
not contribute to the prediction of outcomes (P = 0.59 
and P = 0.16, respectively). Nevertheless, the combina-
tion of all three techniques showed a moderate overall 

Fig. 6 ROC analysis showing the diagnostic performance of radiomics (black line), DECT‑IC (blue line), and MRI (red line) for detecting 1) malignant 
vs. normal pancreatic parenchyma (A), and 2) malignant vs. inflamed pancreatic parenchyma (B). ROC curves are depicted in black, blue, and 
red. Abbreviations:DECT-IC, Dual‑energy CT‑derived iodine concentration. ROC, Receiver operating characteristic curve. ADC, Apparent diffusion 
coefficient

Table 3 Performance of different cox‑regression models to predict outcome combining radiomics features with clinical 
parameters (significant P values are written in bold)

Model 1: unadjusted radiomics model. Model 2: additionally adjusted by T stage. Model 3: additionally adjusted by alcohol abuse and smoking. Model 4: additionally 
adjusted by T stage, alcohol abuse, and smoking. Model 5: additionally adjusted by TNM stage

• Variables that did not reach univariate significance:

◦ Death: age (P = .75), sex (P = .29), arterial hypertension (P = .35), diabetes mellitus (P = .60), family history (P = .44), hypercholesterolemia (P = .75), chronic 
pancreatitis (P = .26), obesity (P = .21), C-reactive protein (P = .77), lipase (P = .44), lactate dehydrogenase (P = .47), creatinine (P = .49), glomerular filtration rate 
(P = .61), leucocytes (P = .99), CA 19–9 (P = .58), CEA (P = .76), N stage (P = .54), M stage (P = .53)

• Variables that reached univariate significance:

◦ Death: alcohol abuse (P = .04), smoking (P = .03), T stage (P = .03)

Abbreviations: b Regression coefficient, SE Standard error, Exp(b) Ratio of hazard rates, CI Confidence interval

Endpoint
(all-cause mortality)

Model b SE Exp(b) 95% CI of Exp(b) Chi-squared P value

Unadjusted Model 1 1.256 0.593 3.513 1.099 to 11.224 5.088 0.0241
Adjusted Model 2 1.434 0.615 4.196 1.258 to 13.995 11.207 0.0037
Adjusted Model 3 2.173 0.702 8.788 2.220 to 34.797 23.444  < 0.0001
Adjusted Model 4 2.415 0.739 11.192 2.630 to 47.627 29.014  < 0.0001
Adjusted Model 5 1.638 0.638 5.145 1.474 to 17.952 14.632 0.0055
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prognostic power (c-index = 0.778 [95% CI, 0.697–0.864], 
P = 0.01).

Imaging features differed in the train/ test splits, 
with GLRLM (c-index = 0.719 [95% CI, 0.638–0.800], 
P < 0.001) and GLDM (c-index = 0.735 [95% CI, 0.644–
0.827], P = 0.001) being the top-ranked features as part of 
the gray level matrix.

On multivariate analysis, alcohol abuse, smoking, 
and T stage were identified as independent prognostic 
parameters for poor outcome, showing a c-index rang-
ing between 0.577 (95% CI, 0.510–0.644) and 0.608 
(95% CI, 0.532–0.684) (P ≤ 0.04). Adding clinical fea-
tures to quantitative radiomics biomarkers increased 
the  Chi2 value significantly from 5.088 (c-index 0.709 
[95% CI, 0.594–0.823], P = 0.02) to 29.014 (c-index 
0.767 [95% CI, 0.678–0.856], P < 0.001).

Discussion
Rapid and reliable detection of malignant lesions in 
patients with symptoms suggestive of pancreatic can-
cer remains often challenging due to small lesion size 
or insufficiently definable tumor margins in case of low 
image quality. This study demonstrated that a multipara-
metric approach involving DECT-IC, DWI, and radiom-
ics can improve the discrimination of  malignant  lesions 
from inflamed or normal pancreatic parenchyma with 
higher diagnostic accuracy than every single modality 
(overall AUC ≥ 0.996, P < 0.001). Moreover, this approach 
allowed for the prediction of survival at moderate overall 
prognostic power.

Over the last decade, an increasing body of evidence 
suggests the incorporation of quantitative imaging bio-
markers into established models of clinical decision-mak-
ing to provide mineable tissue information by automated 
extraction of valuable imaging features [27]. As tumorous 
tissue typically shows heterogeneous features, which vary 
spatially and over time, characteristics of tumor hetero-
geneity might be of outstanding importance in the out-
come prediction of cancer patients [28].

The present study has come to several important find-
ings. First, we analyzed differences in texture parameters 
between tumorous and normal or inflamed pancreatic 
tissue using standard-of-care CT- and MRI examina-
tions. Nearly all investigated features of malignant tissue 
showed a deviation from normal or inflamed pancre-
atic parenchyma. Most studies reporting on the texture 
analysis of tumorous tissue used GLCM to discriminate 
changes in microenvironment [29–31]. Higher tumor 
heterogeneity as indicated by dissimilarity and entropy 
is usually associated with greater variability of quanti-
tative imaging parameters [14]. In line with previously 
published radiomics studies [14, 29, 32, 33], our results 
of high GLCM values reflected heterogeneous pancreatic 

tumor tissue associated with advanced TNM staging and 
a higher percentage of participants with distant metasta-
ses. We found that many parameters of textural analysis 
were stronger associated with overall survival than multi-
ple classic parameters, such as tumor size. Using radiom-
ics alone allowed us to correctly identify all 83 cases of 
malignant pancreatic mass lesions with high diagnostic 
accuracy.

Prediction of survival remains difficult and careful con-
sideration of surgery is needed to avoid a highly morbid 
procedure for relatively little gain. With the advent of 
next-generation CT- and MR devices including various 
hard- and software improvements, imaging modalities 
increasingly attracted scientific attention in the evalu-
ation of tumor characteristics and surgical resectability. 
Tumor heterogeneity can be assessed by either analyzing 
histological or imaging data. In this context, CT offers 
several advantages, such as non-invasiveness, general 
availability, and ease of use. As the routinely performed 
CT is usually part of a standard diagnostic procedure, its 
combination with MRI opens new perspectives in terms 
of a multiparametric approach for the assessment of pan-
creatic mass lesions.

All examined pancreatic lesions showed diffusion 
restriction, which was depicted as a low signal on ADC 
mapping and a high b-value on DWI. However, DWI- 
and ADC maps in our study could not reliably distinguish 
malignant pancreatic lesions from inflamed parenchyma 
(AUC = 0.690), whereas sufficient discriminative power 
was observed when comparing against normal paren-
chyma (AUC = 0.862). Possible explanations could be dif-
ficulties in exactly separating malignant from inflamed 
tissue when contouring pancreatic lesions or a small 
tumor size.

The addition of CT texture features to DWI and iodine 
density measurements significantly increased the tumor 
detection rate to a diagnostic accuracy of 100% and 
improved outcome prediction. A multiparametric com-
bination of CT radiomics features, iodine density meas-
urements, and DWI provided independent prognostic 
value even after adjustment for potential confounders. 
During a median follow-up of 14 ± 12  months (range, 
10–44 months), this approach was found to provide sig-
nificant independent prognostic information for death 
(P = 0.02).

The potential of radiomics to predict outcomes of 
patients with different types of cancer has been shown 
in different previous studies [14, 15, 29, 34, 35]. How-
ever, little is known about the value of our reported 
multiparametric approach in outcome prediction. The 
performance of our best working model that combines all 
three diagnostic approaches showed a moderate overall 
prognostic power. Previous studies in this field revealed 
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performances in the same dimensions using radiomics 
alone or combined with clinical features [15, 34, 35]. We 
further benchmarked the combined model against clini-
cal features and selected laboratory values. Most features 
in the low-ranked area did not reach relevance in differ-
ent test splits. Gray level and first-order features yielded 
the highest importance in most of our constructed mod-
els, complemented by other radiomics features for even 
higher performances. For example, adding GLCM to 
shape features resulted in a net benefit of 0.045 (AUC 
0.953 [95% CI, 0.900–0.983] vs. 0.998 [95% CI, 0.967–
1.0], SE 0.017; P < 0.01).

Our findings underline the usefulness and potential of 
radiomics to aid in clinical decision-making rather than 
being merely complex and unmanageable datasets of tex-
ture spots. Considering the number of diverse radiom-
ics features, Welch et  al. formulated several safeguards 
to refine research about radiomics and ensure reliable 
model construction by identifying signature features 
as surrogates of future tumor behavior [36]. Identifying 
appropriate features that might be able to aid in risk strat-
ification seems to be essential to avoid poor outcomes. 
Regarding time effectiveness, segmentation analysis with 
3D slicer took 8  min on average, highlighting the good 
integrability of the segmentation process into daily clini-
cal routine. However, novel fully automated algorithms as 
part of standard imaging analysis tools might save time.

DECT also facilitates the extraction of the fat content 
from iodine maps, which has emerged as an objective, 
image-based biomarker of disease (i.e., the calculation 
of fat concentration within a voxel of interest using algo-
rithms for material decomposition) [37]. Methods for 
fat quantification are becoming increasingly popular in 
research and clinical practice, but these methods vary 
depending on the manufacturer, phase, and reconstruc-
tion software being used. Besides their role as energy 
storage depots for triglycerides, adipose cells inherit 
important endocrine, metabolic, hematological, immune, 
and structural functions [38]. Derangements in fat com-
position are not only seen in obesity, but also in patients 
with pancreatic cancer. In this context, pancreatic stea-
tosis is regarded as an independent risk factor for pan-
creatic cancer [39, 40]. Moreover, increased pancreatic 
fat content progressively correlates with the risk for pan-
creatic cancer [41, 42]. In a study with 68 cases of histo-
logically proven pancreatic ductal adenocarcinoma, risk 
of developing cancer significantly correlated with higher 
fatty infiltration, which has been assessed by calculating 
pancreatic attenuation in non-contrast CT scans [43]. In 
accordance, cancer patients in our study showed higher 
values of fatty pancreatic degeneration compared to nor-
mal parenchyma (P = 0.01). Future trials are needed to 

investigate clinical and imaging biomarkers, to validate 
available imaging modalities, and to establish diagnostic 
thresholds for the identification and graduation of pan-
creatic steatosis. Ameliorating the adverse effects of fatty 
infiltration will reduce the risk of developing pre-malig-
nant lesions or even pancreatic cancer and further eluci-
date pathophysiological aspects.

Several study limitations have to be addressed. First, 
the assessment of iodine uptake and DWI was performed 
by placing ROIs in the center of the malignant lesions 
not covering the entire tumor area. Therefore, lesion 
characteristics could deviate from whole-tumor analy-
ses that also included tumor periphery. Second, tumor 
heterogeneity was assessed regarding imaging biomark-
ers, not considering genetic alterations of pathological 
tumor tissue. Future studies should focus on linking tex-
ture features of tumor heterogeneity with genetic analysis 
to investigate subtypes of pancreatic cancer. Finally, the 
study was performed at a single center to avoid variabili-
ties associated with scanners from different manufactur-
ers or different scanner generations.

Conclusions
In conclusion, this study showed that a multiparamet-
ric approach allows for accurate diagnosis of pancreatic 
mass lesions, as well as prediction of all-cause mortal-
ity. Therefore, merging radiomics with established imag-
ing modalities may have the potential to identify cancer 
patients by computational allocation in specific survival 
models.
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