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Abstract 

Purpose  Metastatic bone disease (MBD) is the most common form of metastases, most frequently deriving from 
prostate cancer. MBD is screened with bone scintigraphy (BS), which have high sensitivity but low specificity for the 
diagnosis of MBD, often requiring further investigations. Deep learning (DL) - a machine learning technique designed 
to mimic human neuronal interactions- has shown promise in the field of medical imaging analysis for different pur‑
poses, including segmentation and classification of lesions. In this study, we aim to develop a DL algorithm that can 
classify areas of increased uptake on bone scintigraphy scans.

Methods  We collected 2365 BS from three European medical centres. The model was trained and validated on 1203 
and 164 BS scans respectively. Furthermore we evaluated its performance on an external testing set composed of 
998 BS scans. We further aimed to enhance the explainability of our developed algorithm, using activation maps. We 
compared the performance of our algorithm to that of 6 nuclear medicine physicians.

Results  The developed DL based algorithm is able to detect MBD on BSs, with high specificity and sensitivity (0.80 
and 0.82 respectively on the external test set), in a shorter time compared to the nuclear medicine physicians (2.5 min 
for AI and 30 min for nuclear medicine physicians to classify 134 BSs). Further prospective validation is required before 
the algorithm can be used in the clinic.
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Background
Metastatic bone disease (MBD) is the most common 
form of metastatic lesions [1, 2]. The incidence of bone 
metastasis varies depending on the cancer type [3], yet 
around 80% of MBD arise from breast and prostate can-
cers [4]. MBD, as the name implies, is due to the pro-
pensity of these tumours to metastasize to bones, and 
it results in eventually difficulty treating painful lesions. 
Henceforth, early diagnosis is necessary for individu-
alized management that could significantly improve a 
patient’s quality of life [5].

MBD is usually detected using radionuclide bone scin-
tigraphy (or bone scans, BS). BS are nuclear medicine 
images, which are used frequently to evaluate the dis-
tribution of active bone formation, related to benign or 
malignant processes, in addition to physiological pro-
cesses. BS scans are indicated in a spectrum of clinical 
scenarios including exploring unexplained symptoms, 
diagnosing a specific bone disease or trauma, and the 
metabolic assessment of patients prior to and during 
the treatment [6, 7]. BS combining whole-body planar 
images and tomographic acquisition (SPECT – single 
photon emission computed tomography) on selected 
body parts are highly sensitive, as they detect metabolic 
changes earlier than conventional radiologic images, 
with lower sensitivity to lytic lesions. However, depend-
ing on the pattern it may lack the specificity to identify 
the underlying causes. Therefore, a SPECT/CT that cor-
relates the findings of bone scintigraphy anatomically is 
often useful and leads to a more specific diagnosis of the 
changes noted [8], although MRI scans may also be addi-
tionally requested to clarify the diagnosis. Hence, a tool 
to improve the specificity of decisions based on BS, and 
reduce the need for further imaging is a relevant unmet 
clinical need.

Deep learning (DL) is a branch of machine learning 
(ML), and refers to data driven modelling techniques, 
which applies the principles of simplified neuron interac-
tions [9]. The application of imaging analysis techniques 
using artificial neurons on medical imaging started to 
draw attention decades ago [10], but it only became a 
major research focus recently due to the advancement 
in computational capacities and imaging techniques [11, 
12]. The artificial neuron model is used as a foundation 
unit to create complex chains of interactions - DL lay-
ers. These layers are used to generate even more complex 
structures - DL architectures. The neural network (NN) 
training procedure is typically a cost-function minimi-
zation process. The cost function measures the error of 
predictions based on the ground truth labels [13], and 
the DL network learns how to solve a problem directly 
from existing data, and apply it to data it has never seen. 
These complex models contain the parameters (weights) 

for millions of neurons, which can be trained for the rec-
ognition of problem-related patterns in the data being 
analysed.

Several studies investigated the potential of DL-based 
algorithms for analysing bone scintigraphy scans [14–16]. 
The majority of these studies applied DL-algorithms on 
BS scans of diagnosed (specific) cancer patients, which 
could limit the learning ability of the DL-algorithm to dif-
ferentiate MBD from other bone diseases.

In this study, we hypothesize that DL-based algorithms 
can learn the pattern of metastatic bone disease on bone 
scintigraphy scans, and differentiate it from other non-
metastatic bone diseases. We investigate the potential of 
a DL-based algorithm to detect MBD on BS, not limited 
to those of cancer patients, based on activation maps 
obtained using the gradient weighted class activation 
mapping (Grad-CAM) method [17, 18]. By doing so, we 
aim to develop a generalizable tool that can classify scans 
containing metastases and detect MBD on BS. Moreover, 
extracting activation maps with the Grad-CAM method 
[19] and superimposing these maps to the original BD 
scans, we explored the explainability of the deep learn-
ing model’s predictions. This is very important to pro-
mote the application of these methods in the clinic and 
avoid the common misconception that sees DL models as 
“black boxes” without any real connection to clinical and 
imaging characteristics.

Methods
Imaging data
The imaging data were retrospectively collected from 
different European centres: Aachen RWTH University 
Clinic (Aachen, Germany), Aalborg University Hospi-
tal (Aalborg, Denmark), and Namur University Hospi-
tal (Namur, Belgium). The scans were acquired at each 
center, following local protocols and with different scan-
ner and acquisition parameters. The electronic medical 
records of these hospitals were searched for patients who 
underwent BS between 2010 and 2018. Patients for whom 
a definitive classification of the foci was available, mostly 
through further investigations, were further included. All 
images were acquired with anteroposterior (AP) and pos-
teroanterior (PA) whole-body views. The imaging analy-
sis was approved by the Aachen RWTH institutional 
review board (No. EK 260/19). According to Danish 
National Legislation, the Danish Patient Safety Author-
ity can waive informed consent for retrospective studies 
(approval 31-1521-110). All methods were carried out in 
accordance with the relevant guidelines and regulations 
[20]. The study protocol for the in silico trial was pub-
lished on clinicaltrials.gov (NCT: NCT05110430). Man-
ual segmentation of the metastatic spots was performed 
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on 25 BS scans coming from Namur University Hospital 
by the treating radiation oncologists.

Image pre‑processing
Every datapoint containing acquisition at two views (AP 
and PA) was resized to size (length = 256, height = 512) 
and the intensities were normalized to range [0–1] using 
the minimum and maximum intensity of each image. For 
all the data points, image acquisitions at both views are 
appended besides each other as shown in Fig. 1.

Model architecture, training and testing
The training and validation datasets are composed of 
1203 and 164 images respectively, coming from Centre 

A (Aachen) and B (Aalborg). The external test cohort is 
composed of 998 images collected at centre C (Namur). 
A full overview of the patients cohort division between 
the different datasets is reported in Table 1.

The model was trained on 329 images containing 
metastasis from Centre B (94) and A (235). At each 
epoch, the 874 images without any metastasis were 
shuffled and 329 images were randomly selected to 
train the model with balanced labels. VGG16 architec-
ture with ImageNet pretrained weights [21] was trained 
with categorical cross entropy loss for 6 epochs with 
200 steps per epoch. The model was trained with 3 
channel input. The pre-processed input was duplicated 
in all the channels, concatenating the inputs along the 
whole channels dimension to match the size of the pre-
trained ImageNet. During the training, the images were 
augmented [22] by flipping along the vertical axis so 
that the views at AP and PA were randomly represented 
in the left or right in the images.

The last Max Pooling layer in the VGG16 model was 
followed by a Global Average pooling layer, followed by 
a fully connected layer with 512 units and ReLu acti-
vation, which is followed by a classification layer con-
taining 2 units with Softmax activation [23] as shown 
in Fig.  2. The network weights are updated by using 
the Adam optimizer at learning rate of 1e− 4 [24]. The 
trained model’s performance was evaluated on an 
external test dataset (n = 998).

The following software packages were used: Python 
v3.6, Keras v2.0.6 for modelling, training and validation 
and Sklearn v1.1.1 for metrics calculation and results 
visualization. The model was trained and validated on a 
11GB NVidia GeForce GPU.

Quantitative metrics
The quantitative model performance in this study was 
assessed using ROC AUC, sensitivity and specificity of 
the classifier and confusion matrix (true positive rate 
(TPR), true negative rate (TNR), false negative rate 
(FNR) and false positive rate (FPR)). The model was 
evaluated according to the Checklist for AI in Medical Fig. 1  Example of pre-processed BS scans used as input for model 

training

Table 1  Division of the patients cohort between training, validation and external test

Training (n = 1203) Validation (n = 164) External test (n = 998)

Centre A (Aachen) 235 with metastasis
668 normal

58 with metastasis
58 normal

-

Centre B (Alborg) 94 with metastasis
206 normal

24 with metastasis
24 normal

-

Centre C (Namur) - - 411 with metastasis
587 normal
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Imaging (CLAIM) [25] and Standards for Reporting 
Diagnostic accuracy studies (STARD) [26].

In silico clinical trial
To better gauge the proposed DL model performance, 
we developed an application allowing the creation of 
a reference performance point by collecting nuclear 
medicine physician’s feedback based on the visual 
assessment of BS scans. We have enrolled 6 nuclear 
medicine physicians (from one to ten years’ experi-
ence) to measure their performance on the evaluation 
dataset of 134 BS images. This dataset was sampled 
from the Centre C images with an equal number of 
negative and positive cases. In order to collect par-
ticipant’s feedback, the application was displaying BS 
image, comment window and window filtering set-
tings (Fig. 3). In the end of the feedback assessment an 
excel file was generated. For better visual comparison 
we have evaluated DL based AUC on the same data-
set that has been used for visual assessment (134 BS 
images). Bootstrapping technique, involving 100 resa-
mples obtained via random sampling with replacement 
from the same dataset, was utilized to estimate ROC 
AUC 95% confidence interval. Also F1 scores have 
been calculated and reported for the performance of 
both the model and the reader study.

Results
Model performance
The classification performances of the DL model were 
evaluated on the external test set coming from Cen-
tre C, in terms of Area under the Curve (AUC). The 
AUC gives the diagnostic ability of a binary classifier 
to discriminate between true and false values, in this 
case metastatic and non-metastatic bone disease. Fig-
ure  4 (left) represents the ROC curve of the DL clas-
sification model, while Fig.  4 (right) is the confusion 
matrix, which reports the percentages of correct and 
incorrect classification for each class (metastatic and 
non-metastatic).

The model achieved an AUC of 0.897, TPR of 82.2%, 
TNR of 80.45%, FPR of 19.55% and FNR of 17.79% on the 
external test set (n = 998). The model achieved a CLAIM 
score of 64% (27 out of 42 items) and STARD of 50% (15 
out of 30 items).

Explainability of trained model based on activation maps
During the testing phase of the trained model, for the 
scans that were predicted positive (i.e. metastatic dis-
ease), activation maps were extracted using the Grad-
CAM method. The method uses the gradients extracted 
corresponding to the class with highest predicted proba-
bility, flowing through the last convolutional layer, to pro-
duce the activation map. The map was then resized to the 

Fig. 2  The architecture used in the study. Pre-processed BS scans resized to 512 * 512 dimensions were provided as input to the network. The 
network outputs a probability score for presence and absence of metastasis on BS images. X = block repetitions, Conv = Convolution kernel, 
ReLU = rectified linear unit, 3 × 3 = the size of the 2D CNN kernels
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size of the input image and superimposed on the original 
BS scan, allowing visual inspection of activated zones on 
the image as shown in Figs. 5 and 6.

In silico clinical trial
The performance of nuclear medicine physicians based 
on the BS images was evaluated using AUC (Fig. 7, left), 

Fig. 3  Screenshot of the application feedback window used in the in silico trial

Fig. 4  ROC curve for the classification DL model (left) and Confusion matrix (right)
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Fig. 5  BS images which are correctly classified along with their corresponding activation maps extracted using the GRAD-CAM method. Left) 
original BD scan, Right) Grad-CAM activation maps obtained from the DL model. Scan correctly classified with a probability of 0.78 (top) and 0.99 
(bottom)

Fig. 6  BS images which are wrongly classified along with their corresponding activation maps extracted using the GRAD-CAM method. Left) 
original BD scan, Right) Grad-CAM activation maps obtained from the DL model. Scan incorrectly classified with a probability of 0.79 (top) and 0.63 
(bottom)
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where median performance of the nuclear medicine phy-
sician was 0.895 (IQR = 0.087) with F1 score of 0.865 
and median performance of DL based method was 0.95 
(IQR = 0.024) with F1 score of 0.866.

On average, nuclear medicine physicians spent 30 min 
to classify all the 134 scans (Fig. 7, right). Given that the 
physicians had no access to clinical information about 
the patients, it takes on average 15 s to review one scan. 
In comparison, the developed algorithm takes 2 and half 
minutes to classify all the 134 scans, which is around 2 s 
per patient/ scan.

Discussion
In this study, we investigated the potential of DL-based 
algorithms to detect MBD on BSs collected from differ-
ent centres without limiting the study population to can-
cer patients. All BS scans were acquired at each center, 
following the standard of care, with different scanners 
brands and acquisition protocols, assuring the robust-
ness and generalizability of the resulting DL model. 
Our results show that DL-based algorithms have a great 
potential to be applied as clinical decision aid tools, 
which could minimize the time needed by a nuclear 
physician to assess BSs, and increase the diagnostic 
specificity of BSs. The application of the state-of-the-
art classification techniques has yielded a performance 
similar to nuclear physicians with no background about 

the patients’ history, which was further endorsed by the 
results of the in silico clinical trial.

Some studies previously investigated the potential of 
DL algorithms to classify lesions on BSs [27]. A study 
investigated the potential of a DL algorithm trained on 
139 patients to detect MBD on BSs of prostate cancer 
patients [16]. The authors reported that the nuclear 
medicine physicians participating in the study achieved 
a higher sensitivity and specificity compared to the DL 
algorithm, though the differences were not statistically 
significant, and highlighted the possibility of involving 
DL in this clinical aspect. Another study also investi-
gated the ability of DL algorithms to detect MBD in BS 
of prostate cancer patients [15]. However, the authors 
did not report on the comparison with the perfor-
mance of nuclear medicine physicians. Another study 
investigated the performance of two DL architectures 
for classifying BS of prostate cancer patients [28]. The 
study included a large number of scans, and the authors 
reported that the best model achieved an overall accu-
racy of 0.9. Anand et al. reported on the performance of 
EXINI bone software, a classification tool for classify-
ing BS of prostate cancer patients based on bone scan 
index, on simulated and patient scans [29]. The authors 
reported that the software was more consistent in clas-
sifying BS compared to visual assessment. Uniquely, 
we trained our model on patients with and without a 

Fig. 7  Violin plots showing the distributions of AUC scores for DL based and manual (across physicians) metastases detection on BS (left); boxplots 
of the log of the time needed by DL algorithm and nuclear medicine physicians (right)
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history of cancer. The use of our developed algorithm 
resulted in better classification results on the exter-
nal test set compared to the median nuclear medicine 
physician performance, in a significantly shorter time. 
These results highlight the potential of such algorithms 
to become reliable clinical decision support tools that 
minimize the time a clinician needs to review bone 
scintigraphy scans. Furthermore, Grad-CAM maps 
allow the nuclear physicians to rapidly check the spots 
based on which the classification was made. The acti-
vated regions are compared with radiologists’ segmen-
tation of metastatic spots for qualitative assessment 
of the explainability of the model’s predictions on 25 
BS scans (centre C) manually segmented by clinicians 
(Figs. 5 and 6). The activated regions superimposed on 
the image can be used in a clinical setting for qualita-
tive assessment by radiologist which further impacts 
precise diagnosis. In the case of misclassification, 
Grad-CAM activation maps can help to quicky identify 
the area of the scan on which the model based its deci-
sion. In the reported case in Fig.  6, the image clearly 
evidence the injection spot located in the hand of the 
patients and other hyper intense regions in the pelvic 
bone as reasons for misclassification. This suggests the 
model which shows model’s overfitting [30] on features 
that are not relevant to the metastatic spot to classify 
presence or absence of metastasis in images.

While our study included a relatively large number 
of scans for training and externally testing the algo-
rithm, several limitations of this study should be noted. 
Although explainability of model’s predictions were 
explored with qualitative assessment, this study lacks 
quantitative assessment of the activations due to the 
limited number of manual segmentations of metastasis 
(25) on the external test dataset. This could represent a 
strong point in the future development of the tool, with 
the availability of larger annotated datasets. Secondly, a 
prospective validation is required to properly assess the 
possible impact of the algorithm on the current standard 
of care, and considering other clinical characteristics of 
the patients (for example age, sex or primary tumour) 
that could influence classification performances. This 
is especially important given the current retrospective 
nature of the study, to prove beyond reasonable doubts 
that the classification performances are due to imag-
ing features and not based on clinical/demographic data 
instead. Lastly, the physicians performances in the in sil-
ico trial are only indicative, as they were provided only 
with planar images, without corresponding SPECT and 
CT images, and without any clinical covariates available. 
Obviously, this approximates the actual routine in clinical 
settings, but it provides a fair indication of the potential 
added value of the proposed DL model.

Conclusion
We developed a DL based algorithm that is able to detect 
MBD on BSs, with high specificity and sensitivity. This 
tool can be used also as a didactic support for radiologists 
in training. Further prospective validation is required 
before the algorithm can be used in the clinic
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