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Abstract 

Background:  Biologically targeted radiation therapy treatment planning requires voxel-wise characterisation of 
tumours. Dynamic contrast enhanced (DCE) DCE MRI has shown promise in defining voxel-level biological character‑
istics. In this study we consider the relative value of qualitative, semi-quantitative and quantitative assessment of DCE 
MRI compared with diffusion weighted imaging (DWI) and T2-weighted (T2w) imaging to detect prostate cancer at 
the voxel level.

Methods:  Seventy prostate cancer patients had multiparametric MRI prior to radical prostatectomy, including T2w, 
DWI and DCE MRI. Apparent Diffusion Coefficient (ADC) maps were computed from DWI, and semi-quantitative and 
quantitative parameters computed from DCE MRI. Tumour location and grade were validated with co-registered 
whole mount histology. Kolmogorov–Smirnov tests were applied to determine whether MRI parameters in tumour 
and benign voxels were significantly different. Cohen’s d was computed to quantify the most promising biomarkers. 
The Parker and Weinmann Arterial Input Functions (AIF) were compared for their ability to best discriminate between 
tumour and benign tissue. Classifier models were used to determine whether DCE MRI parameters improved tumour 
detection versus ADC and T2w alone.

Results:  All MRI parameters had significantly different data distributions in tumour and benign voxels. For low grade 
tumours, semi-quantitative DCE MRI parameter time-to-peak (TTP) was the most discriminating and outperformed 
ADC. For high grade tumours, ADC was the most discriminating followed by DCE MRI parameters Ktrans, the initial 
rate of enhancement (IRE), then TTP. Quantitative parameters utilising the Parker AIF better distinguished tumour and 
benign voxel values than the Weinmann AIF. Classifier models including DCE parameters versus T2w and ADC alone, 
gave detection accuracies of 78% versus 58% for low grade tumours and 85% versus 72% for high grade tumours.

Conclusions:  Incorporating DCE MRI parameters with DWI and T2w gives improved accuracy for tumour detection 
at a voxel level. DCE MRI parameters should be used to spatially characterise tumour biology for biologically targeted 
radiation therapy treatment planning.
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Background
Dynamic Contrast Enhanced (DCE) MRI is an effective 
tool to assess tissue perfusion and permeability, which 
are increased in prostate cancer (PCa). It is used along-
side T2-weighted (T2w) and Diffusion Weighted Imaging 
(DWI) within a multiparametric MRI (mpMRI) protocol 
to detect and diagnose clinically significant PCa via the 
Prostate Imaging and Reporting System (PI-RADS) [1]. 
Recent updates to PI-RADS have reduced the impor-
tance of DCE MRI, however, and some now suggest a 
biparametric MRI (bpMRI) approach may be sufficient 
for tumour detection by obtaining T2w and DWI alone. 
This has been motivated by a desire to reduce time and 
costs, alongside reducing the risks associated with con-
trast agent injection. Studies have been performed to 
compare bpMRI against mpMRI, with some concluding 
they are comparable [2–5], whilst others have concluded 
that mpMRI is better because DCE MRI is beneficial for 
assessing higher PI-RADS lesions [4, 6].

DCE MRI offers more than detecting clinically signifi-
cant cancers, however, as it provides underlying biologi-
cal information about tumours which cannot be replaced 
by other imaging sequences [7]. For radiation therapy 
applications, studies have shown that DCE MRI is valu-
able for delineating tumours and can be used as a tool to 
inform dose painting approaches [8, 9]. Further, informa-
tion from DCE MRI is complimentary to T2w and DWI, 
where T2w imaging is generally used for anatomical 
definition of treatment volumes and organs at risk, while 
DWI has been linked to cellularity and improves the reli-
ability in differentiating between benign and clinically 
significant disease.

The biological characteristics of a patient’s tumour 
derived from DCE MRI can be used alongside T2w and 
DWI during the optimisation process for biologically tar-
geted radiation therapy treatment planning [10]. Biologi-
cally targeted radiation therapy is an advanced form of 
dose painting whereby individual voxels are characterised 
by specific biological characteristics and termed “dose 
painting by numbers” [11]. Biological characteristics 
include those which are known to impact the biological 
effect of the dose delivered including radiosensitivity, the 
rate of tumour proliferation, and the presence of hypoxia 
[12], and can be derived from quantitative imaging in 
combination with mathematical modelling approaches 
[10]. Further work is required, however, to optimise the 
imaging parameters used to derive tumour characteris-
tics for biologically targeted radiation therapy treatment 
planning, including those from DCE MRI.

Depending on the time resolution of image acquisition 
and the processing software used, DCE MRI can be ana-
lysed in different ways with increasing levels of complex-
ity. The simplest analysis is performed through qualitative 
assessment of the T1-weighted images by manual inspec-
tion. More complex assessments are made by fitting a 
curve to the dynamic signal in each voxel and extracting 
parameters from the curve, termed ‘semi-quantitative’ 
parameters. Further to this, ‘quantitative’ kinetic param-
eters are computed by pharmacokinetic modelling of the 
dynamic signal or dynamic contrast agent concentra-
tions derived from the dynamic signal [13]. A variety of 
methods and software packages exist to compute these 
parameters, with many inputs required such as the arte-
rial input function (AIF) for pharmacokinetic modelling 
approaches [14]. Several prior studies have compared 
the ability of DCE MRI parameters to identify PCa [15, 
16, 17, 18, 19] with many focusing on their ability to dif-
ferentiate lesions based on Gleason Scores [19, 20, 21, 
22]. However, each of these studies have been limited 
to assessing regions-of-interest (ROIs) only, many ana-
lysed semi-quantitative parameters alone or quantitative 
parameters alone, and most lacked co-registration with 
whole mount histopathology for ground truth validation.

In this study we investigated the ability of semi-quan-
titative and quantitative DCE MRI parameters to detect 
PCa in comparison with DWI and T2w imaging, using 
co-registered whole mount histopathology for validation. 
Analysis was carried out at a voxel-wise level, in contrast 
to prior studies in this field which used an ROI-based 
approach. The goal was to identify DCE MRI parameters 
which could provide complimentary information at a 
voxel-wise level, alongside T2w and DWI, to characterise 
the spatial distributions of tumour biology. Such voxel-
wise spatial distribution maps of tumour biology could 
be used to plan biologically targeted radiation therapy, to 
personalise treatment whilst maximising treatment effi-
cacy [10, 12].

Methods
Patients
Seventy PCa patients scheduled for radical prostatec-
tomy between April 2013 and September 2018 at the 
Peter MacCallum Cancer Centre, Melbourne, were 
recruited to this Human Research Ethics Committee 
approved study (HREC/15/PMCC125), with all patients 
providing written informed consent. Imaging data from 
61 of these patients were suitable for this study, while 
the remaining nine either did not have complete data 
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for co-registration with histology or motion artefacts on 
DCE MRI which rendered the images unreliable. Table 1 
details clinical and pathological information across the 
61-patient cohort. The Gleason Score and Grade Group 
of the dominant intraprostatic lesion are given, although 
all tumour foci were used in the analysis.

MRI data acquisition
Multiparametric MRI was obtained at 3T from each 
patient before prostatectomy, with the first 32 patients 
scanned on a Siemens MAGNETOM Trio (Siemens 
Healthineers, Erlangen, Germany) and the remaining 25 
patients using a Siemens MAGNETOM Skyra. A sur-
face body coil was used, without an endorectal coil to 
reduce the chance of deformation to the prostate during 
scanning. Patients without contraindications were given 
Buscopan to reduce rectal peristaltic motion. The imag-
ing protocol was based on the European Society of Uro-
genital Radiology (ESUR) guidelines [23], and included 
T2w, DWI, and DCE imaging.

T2w imaging was obtained using a 2D turbo spin 
echo sequence using acquisition matrix = 320 × 320, 
FOV = 160  mm × 160  mm, slice thickness = 3  mm, 
TE = 89 – 96 ms, TR = 3500 – 4830 ms. DWI images were 
obtained using a 2D spin echo sequence with echo planar 

readout, with b-values = 50, 400, 800 and 1200  s/mm2, 
acquisition matrix = 250 × 250, FOV 250 mm × 250 mm, 
slice thickness = 4  mm. Apparent Diffusion Coefficient 
(ADC) maps were computed from DWI using inline soft-
ware. Pre-contrast 3D T1-weighted images with variable 
flip angles (5º, 10º, 15º, 20º, 30º) were acquired. DCE-MRI 
was performed using a 3D spoiled gradient echo with a 
time-resolved view sharing sequence for high tempo-
ral resolution imaging (TWIST, Siemens Healthineers, 
Erlangen, Germany). Each patient received a 10ml bolus 
injection of contrast agent Dotarem (gadoterate meglu-
mine, Guerbet, USA), followed by a saline flush. For the 
first eight patients, DCE-MRI data was collected using 
acquisition matrix = 256 × 256, FOV = 200 × 200  mm, 
flip angle = 20º with 16 transverse partitions at 4  mm 
section thickness and repeated 60 times at 7.2  s inter-
vals except one patient with 20 transverse partitions 
at 3.5  mm section thickness, repeated 90 times at 5.3  s 
intervals to improve coverage of the small prostate. For 
the remaining patients, the DCE temporal resolution was 
increased to 120 times at 3.6 s intervals using a reduced 
spatial resolution with acquisition matrix = 128 × 128, 
FOV = 200 mm × 200 mm.

Semi-quantitative parametric maps were computed 
from the DCE MRI data using Dynamika software (Image 
Analysis Group, London, UK) [24] by fitting a continu-
ous piecewise linear function to the signal intensity curve 
of each voxel (see Fig. 1). Parameters extracted from this 
linear function included the initial rate of enhancement 
(IRE) which is the slope of the enhancement phase, the 
time to peak enhancement (TTP) which is the difference 
between the start of enhancement and the plateau phase, 
the maximum enhancement (ME), the time of contrast 
agent onset (Tonset), the time of contrast agent washout 
(Twashout), the initial rate of washout (IRW) which is the 
slope of the washout phase and the area under the curve 
(AUC) which was the area between the baseline intensity 
and the normalised intensity curve.

DCE signals were converted to concentrations of the 
contrast agent. Relaxivity of the contrast agent was 3.5 
Lmmol−1 s−1 [25], and the T1 value for the arterial blood 
relaxation time was fixed at 1664 ms [26]. The motion in 
some patients’ pre contrast variable flip angle scans was 
found to impact the accuracy of tissue T1 calculation and 
therefore a fixed T1 value of 1597  ms [27] in the pros-
tate for all patients was used for consistency. The initial 
area under the Gadolinium contrast agent concentra-
tion curve for the first 60  s post-injection (iAUGC60) 
was computed. The arterial input function was defined 
using two population-based AIFs: the Weinmann model 
[28] and the Parker model [29]. Pharmacokinetic param-
eters Ktrans (the volume transfer constant between 
blood plasma and extra-vascular extra-cellular space) 

Table 1  Patient clinical and pathological details. Gleason Score, 
Grade Group and PIRADS v2 (1) are reported for the dominant 
intraprostatic lesion. PSA = prostate specific antigen

Variable (n = 61) Mean Range

Age 62 (45, 74)

PSA (ng/mL) 9.0 (2.2, 42)

n (%)
Gleason Score / Grade Group

 -  3 + 3 / 1 4 (6.6)

 -  3 + 4 / 2 31 (50.8)

 -  4 + 3 / 3 20 (32.8)

 -  4 + 5 / 5 3 (4.9)

 -  5 + 4 / 5 3 (4.9)

Extraprostatic extension 27 (44.3)

Pathological T Stage

 -  pT2 30 (49.2)

 -  pT3a 23 (37.7)

 -  pT3b 8 (13.1)

PIRADs v2

 -  1 1 (1.6)

 -  2 7 (11.5)

 -  3 10 (16.4)

 -  4 10 (16.4)

 -  5 31 (50.8)

 -  indeterminate 2 (3.3)
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and Ve (volume of extra-vascular extra-cellular space) of 
the Tofts model were obtained as shown in Fig. 1, using 
Dynamika software (Image Analysis Group, London, UK) 
[24, 30].

Co‑registration with histology
In vivo mpMRI was co-registered with high resolution 
Haematoxylin and Eosin (H&E) stained histology using 
an established framework previously reported [31]. In 
brief, the H&E-stained histology slides were annotated by 
an experienced urological pathologist (CM) for tumour 
location and Gleason Score and digitised using an Epson 
Perfection V700 scanner (Epson, Suwa, Japan). Co-reg-
istration of in  vivo mpMRI with histology included an 
intermediate step utilising ex  vivo MRI of the prostate 
specimen and a combination of rigid and deformable reg-
istration to account for tissue shrinkage and deformation 
of the prostate caused by specimen removal and histol-
ogy processing. All co-registered in  vivo mpMRI maps 
and histology data were resampled into isotropic voxels 
to match the 3D T2w MRI used in the registration pro-
cess which had resolution of 0.8 × 0.8 × 0.8 mm.

Mask images created from the annotated histology 
slides were used to define tumour voxels in the co-reg-
istered mpMRI. To define benign voxels, the tumour 

annotation masks were dilated by 3.3 mm to account for 
registration uncertainty calculated in a prior study [31] 
and all voxels outside this boundary were considered 
benign. Hence there was a small proportion of voxels 
around the tumour annotation mask which were not cat-
egorised as tumour or benign and therefore not analysed 
due to the registration uncertainty (see Fig. 2).

Statistical analysis
The statistical analysis carried out was based on the fol-
lowing questions: (1) does each MRI parameter within 
tumour tissue have a significantly different data distribu-
tion compared with benign tissue?; (2) which DCE MRI 
parameter is the best imaging biomarker for identifying 
tumours on MRI?; (3) which population-based AIF func-
tion between the Parker and Weinmann models used 
to compute pharmacokinetic parameters Ktrans and Ve 
best distinguishes between tumour and benign voxel 
values?; and (4) what improvement in a computer aided 
detection (CAD) system will DCE MRI parameters pro-
vide when combined with T2w and ADC? Each of these 
questions were addressed at a voxel-wise level by assess-
ing all tumour voxels together, then separately accord-
ing to those with low-grade disease defined as tumour 
voxels with Gleason Score <  = 3 + 4 / Grade Group <  = 2 

Fig. 1  Semi-quantitative parameters were computed from the DCE MRI time series of each patient by fitting a piece-wise linear function to the 
signal intensity of each voxel, and AUC extracted from the normalised signal intensity curve. Quantitative maps Ktrans and Ve were computed 
by fitting the Tofts pharmacokinetic model to the DCE MRI data and the iAUGC60 parameter from the area under the Gadolinium contrast agent 
concentration curve
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and tumour voxels with high-grade disease defined as 
Gleason Score >  = 4 + 3 / Grade Group >  = 3. For each 
analysis DCE MRI parameters Tonset, Twashout and 
IRW were excluded. This was due to the Tonset param-
eter being inconsistent across the dataset and challeng-
ing to reproduce, while Twashout and IRW contained 
many zero value pixels as the contrast agent had not 
washed out from the entire prostate during the imaging 
timeframe.

To first assess the difference in MRI parameter values 
between tumour and benign voxels, two-sample Kolmog-
orov Smirnov tests were used. To address the second and 
third questions, Cohen’s d was computed, which is a type 
of effect size measure to compare the difference between 
the mean of two groups [32]. A higher Cohen’s d value 
indicates a larger difference between the two groups, 
where a common interpretation is a negligible effect size 
is < 0.2, a small effect size is 0.2 to 0.5, medium effect size 
is 0.5 to 0.8 and large effect size is > 0.8. In this analysis 
the means considered were the tumour voxel values and 
benign voxel values for each MRI parameter.

To answer the last question to determine how DCE 
MRI parameters improve tumour detection in a CAD 
system when used along with ADC and T2w MRI, Logis-
tic Regression (LR) and Random Forest (RF) classifier 
models were used. Only 57 of the original 61 patients 

were used for this step, as four patients had artefacts on 
ADC maps caused by rectal gas or motion during scan-
ning and therefore were not suitable. Data was first nor-
malised, and models trained using 80% voxels and the 
remaining 20% voxels were used as test data. To address 
class imbalance due to substantially more benign vox-
els (1,059,147) than tumour voxels (228,725), the benign 
voxels were down sampled using random sampling to 
match the number of tumour voxels more closely.

Multiple LR and RF models were fit to the data to assess 
the importance of DCE MRI. Firstly, by fitting models 
using T2w and ADC alone, then adding Ktrans (the most 
reported DCE MRI parameter), and then three additional 
models with systematic addition of DCE MRI parameters 
to determine which would give the best tumour predic-
tion performance. These models utilised semi-quantita-
tive DCE parameters alone, quantitative DCE parameters 
alone, then both semi-quantitative and quantitative DCE 
parameters, each excluding highly correlated parameters 
identified by computing Pearson correlation coefficients. 
Performance metrics sensitivity, specificity and accuracy 
were computed for all models, and feature importance 
assessed.

Fig. 2  Multiparametric MRI including T2w, ADC and DCE MRI semi-quantitative and quantitative maps were rigidly registered with in vivo 3D T2w 
MRI, then deformably registered with ex vivo MRI and histology data. Tumour voxels (orange outline) were derived from pathologist’s annotations 
on co-registered histology, and benign voxels (blue outline) were defined as all prostate voxels 3.3 mm beyond this tumour boundary
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Results
As shown in Table 1, there were 35 patients (57%) with 
low grade index lesions (four with Gleason Score 3 + 3 / 
Grade Group 1 index lesions and 31 with Gleason Score 
3 + 4 / Grade Group 2 index lesions), and the remaining 
26 patients (43%) had high grade index lesions (Gleason 
Score >  = 4 + 3 / Grade Group >  = 3), all of whom had 
PIRADS v2 scores on mpMRI of 3 and above. Over 80% 
of patients had a PIRADS v2 lesion of 3 or above, with 
two patients classified as indeterminate due to artefacts 
on ADC maps.

Distribution of tumour and benign voxel values
Kolmogorov–Smirnov tests showed that data distribu-
tions between tumour and benign voxel values for all 
MRI parameters, both for all tumours and when tumours 
were separated into high grade and low grade, were sig-
nificantly different to benign voxel values and could be 
considered to come from different data distributions.

Figure  3 shows box and whisker plots for selected 
parameters, comparing the distribution of benign voxel 
values with low grade and high grade tumour voxel 
values. The mean DCE MRI parameters Ktrans, IRE, 
iAUGC60, AUC and ME were higher in tumour than 

benign tissue, while the mean ADC and DCE MRI 
parameter TTP were lower in tumours when compared 
with benign tissue.

Potential imaging biomarkers from DCE MRI
Table  2 details the Cohen’s d values for each MRI 
parameter, ordered from maximum to minimum based 
on the absolute value. Cohen’s d values show that 
ADC was the most discriminating MRI parameter for 
tumours overall, with the largest effect size of 0.959 for 
high grade tumours and medium effect size of 0.644 
for all tumours combined. However, for low grade 
tumours, the DCE MRI parameter TTP was shown to 
be more discriminating than ADC with a Cohen’s d 
value of 0.478 versus 0.323.

When assessing the DCE MRI parameters, four had 
a large effect size (Cohen’s d over 0.8) for high grade 
disease: Ktrans, IRE, TTP and iAUGC60, with TTP and 
Ktrans also having Cohen’s d over 0.8 for all tumours 
combined. For low grade tumours, there were small 
to negligible effect size values given for all DCE MRI 
parameters. All tumours combined, as well as both high 
grade and low grade tumours showed the following 
order of discrimination: ADC, Ktrans, IRE, iAUGC60, 

Fig. 3  Box and whisker plots (excluding outliers) showing the distribution of benign, low grade (LG), high grade (HG) and all tumour voxel values 
from (a) T2w, (b) ADC, (c) TTP, (d) IRE, (e) AUC, (f) ME, (g) Ktrans Parker, (h) Ve Parker and (i) iAUGC60
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T2w. Both AUC and ME parameters had negligible 
effect size (Cohen’s d < 0.2).

Parker versus Weinmann Population‑based AIF function
Utilising the Parker AIF to compute Ktrans and Ve was 
more discriminating for all tumours than the Weinmann 
AIF. For all tumours Ktrans Parker had a Cohen’s d value 
of 0.500 for the Parker AIF and 0.453 for the Weinmann 
AIF, while Cohen’s d for Ve Parker was higher than Ve 
Weinmann for all tumours (0.286 versus 0.277) and low 
grade tumours (0.315 versus 0.267). Hence, for the subse-
quent CAD models, Ktrans and Ve parameters computed 
with the Parker AIF have been used.

CAD Models with and without DCE MRI Parameters
Correlation coefficients for each MRI parameter are 
shown in Fig.  4, for low grade, high grade, all tumours 
and benign voxel values. The T2w and ADC values 
showed very low correlations with all other MRI param-
eters, with the largest correlation between T2w and ADC 
in benign voxels of 0.30. DCE MRI parameter Ktrans 
highly correlated with both iAUGC60 (range 0.80 to 0.84) 
and IRE (range 0.70 to 0.74). In addition, iAUGC60 was 
highly correlated with IRE (range 0.68 to 0.74), and ME 
(range from 0.62 to 0.79). The AUC parameter showed 
the highest correlation of all parameters with ME (rang-
ing between 0.93 to 0.95). Hence, the CAD model utilis-
ing quantitative parameters with no high correlations 
excluded iAUGC60 which left Ktrans and Ve. The CAD 

model with semi-quantitative DCE MRI parameters 
excluded ME which left TTP, IRE and AUC. Lastly the 
CAD model which combined semi-quantitative and 
quantitative parameters excluded those with a correla-
tion coefficient over 0.65 which left Ktrans, Ve, TTP and 
AUC.

Table  3 details the performance metrics for each of 
the CAD classifier models. Overall, the RF classifier 
performed better than the LR classifier when DCE MRI 
parameters were included, higher sensitivity and accu-
racy values (the one exception is the low grade tumour 
model with T2w, ADC and Ktrans, which gave equal 
sensitivity between the two classifiers of 63%). In con-
trast the LR classifier performed better overall than the 
RF classifier when just T2w and ADC parameters alone 
were used. Furthermore, the LR models appeared to 
reach a plateau in accuracy when more DCE MRI param-
eters were added, suggesting the models were overfit-
ting in contrast to the RF models which continued to 
increase in accuracy with the addition of more DCE MRI 
parameters.

When assessing the RF models, adding T2w and ADC 
maps with semi-quantitative DCE MRI parameters 
alone (TTP + IRE + AUC) gave better detection per-
formance overall when compared with adding quanti-
tative DCE MRI parameters alone (Ktrans + Ve). The 
detection accuracy for high grade tumours was 82% for 
semi-quantitative parameters and 80% for quantitative 
parameters, whereas accuracy for low grade tumours 
was 74% versus 71% respectively. Similarly, sensitivity 
for high grade tumours was 0.76 for semi-quantitative 
parameters versus 0.72 for quantitative parameters, 
while low grade tumours achieved 0.63 versus 0.57 for 
each respectively. Specificity was higher than sensitiv-
ity for all CAD models. The RF models which used both 
semi-quantitative and quantitative DCE MRI parameters 
(Ktrans + Ve + TTP + AUC), achieved the highest per-
formance metrics. High grade tumours were predicted 
with the highest accuracy of 85%, with sensitivity 0.79 
and specificity of 0.89 whilst the low grade tumour model 
resulted in accuracy of 78% with sensitivity 0.68 and 
specificity of 0.86, and all tumours combined gave accu-
racy 80%, sensitivity 0.72 and specificity 0.84.

Figures  5 and 6 show pie charts with the relative fea-
ture importance ranking for MRI parameters in each low 
grade and high grade RF models. The ADC parameter 
was the most important individual feature overall, par-
ticularly predominant in the high grade tumour models 
ranging from 33 to 62% (Fig. 6). For the low grade tumour 
models, the feature importance for ADC ranged from 17 
to 51% however when DCE parameters were included, 
Ktrans, Ve and TTP frequently matched or surpassed the 
ADC feature importance by 1%. Furthermore, there was 

Table 2  Absolute Cohen’s d values for each MRI parameter 
comparing benign voxels versus low grade tumour, high grade 
tumour and all tumour voxels. MRI parameters ordered by 
highest to lowest absolute Cohen’s d value based on all tumours. 
Cohen’s d values < 0.2 represent a negligible effect size, while 
values above 0.2, 0.5 and 0.8 represent small, medium and large 
effect sizes respectively

MRI Parameter Low Grade 
Tumours

High Grade 
Tumours

All Tumours

ADC 0.323 0.959 0.644

TTP 0.478 0.548 0.524

Ktrans Parker 0.264 0.759 0.500

Ktrans Weinmann 0.217 0.701 0.453

IRE 0.255 0.591 0.416

iAUGC60 0.252 0.513 0.384

Ve Parker 0.315 0.241 0.286

Ve Weinmann 0.267 0.286 0.277

T2w 0.221 0.045 0.090

AUC​ 0.030 0.084 0.028

ME 0.022 0.053 0.016
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no more than 3% difference between the feature impor-
tance of all parameters in the low grade models indicating 
a relatively even contribution from each MRI parameter.

For all high grade tumour models, when Ktrans was 
included it was the second most important parameter 
after ADC, ranging from 16 to 30%. The importance of 
T2w MRI in the RF models was consistently lower than 
for ADC and decreased with additional DCE MRI param-
eters. When quantitative or semi-quantitative DCE MRI 
parameters were included, they contributed between 34 
– 67% in feature importance for the low grade models 
and between 30 – 54% for the high grade models.

Discussion
The clinical utility of DCE MRI for detecting PCa has 
been the subject of recent debate, with its limited role 
for detecting clinically significant disease within the 
PIRADS scoring system. However, the PI-RADS Steering 

Committee recommend that mpMRI is preferrable over 
bpMRI when the priority is cancer detection [33] and 
that bpMRI could only be considered when image quality 
and radiology readings are of a high quality. DWI is the 
most prone to imaging artefacts and can have low signal-
to-noise ratio [34], and therefore DCE remains impor-
tant. Furthermore, DCE MRI contributes important 
biological information about tumour perfusion which 
cannot be replaced by other sequences. This information 
is particularly relevant for biologically targeted radiation 
therapy applications as it complements the information 
from T2w and DWI.

DCE MRI also has significant potential as a bio-
marker for monitoring response to RT [35, 36] as it can 
quantify changes to tissue perfusion and permeabil-
ity. Spatial maps of tumour perfusion and permeability 
from DCE MRI can provide baseline features for moni-
toring response during treatment (for the purpose of 

Fig. 4  Heatmaps showing the degree of correlation between each MRI parameter in low grade (top left) and high grade tumours (top right), all 
tumour voxels (bottom left) and benign voxels (bottom right). Ktrans and Ve were computed using the Parker AIF
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Table 3  Performance metrics from each of the Logistic Regression and Random Forest classifier models, where low grade tumours 
have Gleason Score <  = 3 + 4 / Grade Group <  = 2 and high grade tumours have Gleason Score >  = 4 + 3 / Grade Group >  = 3. The 
best performing metrics when comparing the two classifiers are in bold. Ktrans and Ve were computed using the Parker AIF

MRI Parameters Logistic Regression Models Random Forest Models

Low Grade Tumours Sensitivity Specificity Accuracy (%) Sensitivity Specificity Accuracy (%)

T2w + ADC 0.21 0.89 60 0.40 0.70 58

T2w + ADC + Ktrans 0.25 0.88 63 0.44 0.77 63
T2w + ADC + Ktrans + Ve 0.38 0.84 65 0.57 0.81 71
T2w + ADC + TTP + IRE + AUC​ 0.48 0.79 66 0.63 0.83 74
T2w + ADC + Ktrans + Ve + TTP + AUC​ 0.47 0.79 66 0.68 0.86 78
High Grade Tumours Sensitivity Specificity Accuracy (%) Sensitivity Specificity Accuracy (%)

T2w + ADC 0.65 0.81 74 0.63 0.79 72

T2w + ADC + Ktrans 0.64 0.82 75 0.68 0.84 77
T2w + ADC + Ktrans + Ve 0.65 0.83 75 0.72 0.86 80
T2w + ADC + TTP + IRE + AUC​ 0.65 0.82 75 0.76 0.87 82
T2w + ADC + Ktrans + Ve + TTP + AUC​ 0.65 0.83 76 0.79 0.89 85
All Tumours Sensitivity Specificity Accuracy (%) Sensitivity Specificity Accuracy (%)

T2w + ADC 0.56 0.74 66 0.54 0.69 62

T2w + ADC + Ktrans 0.56 0.76 66 0.57 0.77 68
T2w + ADC + Ktrans + Ve 0.60 0.75 68 0.64 0.79 72
T2w + ADC + TTP + IRE + AUC​ 0.62 0.74 69 0.68 0.81 75
T2w + ADC + Ktrans + Ve + TTP + AUC​ 0.61 0.75 68 0.72 0.84 80

Fig. 5  Pie charts showing the relative feature importance for MRI parameters in the RF models for low grade tumours. Ktrans and Ve computed 
using the Parker AIF
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biologically adaptive radiation therapy) or post treatment 
to detect recurrent disease. Whilst there has been a focus 
on imaging methods to detect only clinically significant 
PCa at diagnosis to avoid overtreatment of non-clini-
cally significant disease, it could be argued that the focus 
should be to detect all cancers to differentiate between 
non-clinically significant and clinically significant dis-
ease. The latter could then receive treatment and the for-
mer be monitored for progression to a higher grade via 
active surveillance [37].

The aim in this study was to investigate the ability of 
DCE MRI parameters to detect PCa at a voxel-level in 
multiparametric MRI data for comparison with T2w 
and ADC maps. Key strengths of this study included 
the voxel-wise analysis using a highly controlled dataset, 
the accurate co-registration with ground truth histology 
data for all MRI parametric maps using an established 
framework [31], and the comprehensive set of semi-
quantitative and quantitative DCE MRI maps. Another 
key strength was the separate assessment of low grade 
and high grade tumours, to determine whether the rela-
tive importance of MRI parameters would differ between 
the two groups and further inform the most appropri-
ate approach for biologically targeted radiation therapy 
planning.

Potential Imaging Biomarkers from DCE MRI
The most common DCE MRI imaging biomarkers used 
in clinical studies and trials to date are Ktrans and 
iAUGC [38]. Both quantitative parameters have been 
used to monitor the effect of oncology drugs includ-
ing antiangiogenic or antivascular therapies, with many 
therapies showing a consistent reduction in Ktrans 
and/or iAUGC indicating a positive response [39]. 
Here, Ktrans was the most discriminating quantitative 
DCE MRI parameter whereas TTP was the most dis-
criminating semi-quantitative DCE MRI parameter. For 
high grade tumours Ktrans was the most discriminat-
ing after ADC followed by semi-quantitative param-
eter IRE, then TTP, then iAUGC60. In contrast, TTP 
was the most discriminating parameter for low grade 
tumours, followed by ADC then Ktrans.

When comparing ADC with DCE MRI parameters, 
ADC was more discriminating for high grade tumours 
and for all tumours combined but not for low grade 
tumours where it was surpassed by TTP. The strong 
performance of TTP for tumour detection is consist-
ent with several earlier studies. For example, Zhao 
et al. [17], investigated the correlation of six perfusion 
parameters with Ga-68 PSMA PET, and found that 
malignant lesions had significantly shorter TTP values 
than benign lesions and no other perfusion parameters 

Fig. 6  Pie charts showing the relative feature importance for MRI parameters in the RF models for high grade tumours. Ktrans and Ve computed 
using the Parker AIF
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(including Tonset, wash-in, washout, peak enhance-
ment intensity and iAUC60) were significant. While 
in the study by Sung et  al. [16], TTP was identified as 
one out of seven top DCE MRI parameters for detect-
ing PCa.

In addition, several researchers have concluded that 
‘wash-in’, equating to IRE used here, is a particularly 
significant semi-quantitative DCE MRI parameter for 
detecting tumours. This includes Isebeart et  al. [18] 
who concluded that wash-in was the most accurate 
semi-quantitative parameter for discriminating between 
tumour and benign prostate tissue; Kim et  al. [19] who 
assessed semi-quantitative DCE MRI parameters and 
concluded that wash-in was the most accurate for dif-
ferentiating cancer foci for Gleason Score 8 and higher; 
and Sung et  al. [16] who found that ‘wash-in-rate’ was 
a high performing DCE MRI parameter for detecting 
PCa. These results are consistent with the findings here 
where IRE was the most discriminating semi-quantitative 
parameter for high grade tumours. It was not, however, 
the most discriminating semi-quantitative parameter for 
low grade tumours or all tumours combined which was 
TTP in both cases.

Parker versus Weinmann Population‑based AIF function
Quantitative DCE MRI parameters are expected to be 
more robust than semi-quantitative parameters, as the 
raw signal intensity value is converted into contrast 
agent concentration. In theory this means quantitative 
DCE MRI parameter values should be more comparable 
between studies and centres because differences have 
been reduced, such as those caused by MRI scanner type, 
the data acquisition process, the contrast agent dose, and 
injection protocol used. Despite this, substantial variabil-
ity can still exist in Ktrans and Ve values particularly due 
to the different models available and input parameters 
required to compute them such as the AIF [14]. Multi-
centre studies have shown that AIF induced variations 
are larger for Ktrans than for Ve, however they are largely 
systematic with relatively little change to parametric map 
patterns within the prostate itself [40, 41].

In this study, obtaining a patient-specific AIF was 
problematic due to flow artefacts at the femoral arteries, 
so two different population-based AIFs were used. This 
included the Weinmann AIF [28] which has low-tempo-
ral-resolution and the Parker AIF, which has high-tempo-
ral resolution and shows a first pass and a recirculation 
peak, followed by a prolonged washout [29]. Results 
showed that Ktrans and Ve values computed using the 
Parker AIF was more discriminatory for tumour overall 
than the Weinmann AIF, however differences were small. 
The minor improvement in discriminatory power may be 
due to the Parker AIF having a more realistic time course 

for blood perfusion in the prostate due to its higher res-
olution and its mode of derivation. The Parker AIF was 
averaged from a larger cohort (67 DCE MRI studies from 
23 patients) than the Weinmann AIF (derived using con-
trast agent measurements from 5 healthy volunteers).

Results can be compared with a study by Othman 
et al. [42] who computed Ktrans, Ve and Kep for 66 PCa 
patients using the Tofts model and three different AIFs, 
a Fritz-Hansen AIF [43] which was considered ‘fast’, the 
Parker AIF considered ‘intermediate’, and the Wein-
mann AIF considered ‘slow’. ROC analyses indicated all 
three AIFs had similar diagnostic accuracies however the 
Parker AIF gave the highest goodness of fit (chi2 value) 
of the Tofts model to the average signal from the lesion 
volumes. Another study by Azahaf et  al. [14] found the 
Weinmann AIF was the best for distinguishing PCa from 
benign tissue when compared with a patient-specific AIF 
and the Fritz-Hansen AIF. However they did not include 
the Parker AIF in their analysis.

CAD Models with and without DCE MRI Parameters
Numerous CAD models have been developed over the 
years to predict tumour location from mpMRI data, 
incorporating T2w, DWI and DCE MRI and often radi-
omics or deep learning techniques [44]. Here, the pur-
pose was to utilise a series of CAD models to quantify the 
difference in tumour detection performance at a voxel-
level with and without DCE MRI parameters. Results 
showed that when DCE MRI parameters were included 
the detection performance improved versus using T2w 
and ADC alone, with up to 20% improvement in accuracy 
for detecting high grade tumours and up to 13% improve-
ment in accuracy for detecting low grade tumours.

The CAD model utilising semi-quantitative DCE 
parameters gave a 2–3% higher accuracy than when uti-
lising quantitative DCE parameters alone. Despite the 
semi-quantitative DCE MRI parameters giving higher 
detection performance, this may not be reproducible 
in low resolution data when fewer post-contrast images 
are available. Therefore, utilising quantitative DCE MRI 
parameters for tumour detection is preferred, but if they 
are not available, then using semi-quantitative DCE MRI 
parameters for tumour detection is better than none.

When assessing the CAD model feature importance, 
the ADC parameter was the most dominant which is 
consistent with the Cohen’s d results where ADC was 
the most discriminating parameter overall. It should be 
recognised, however, that RF feature importance rank-
ing cannot be directly compared because Cohen’s d 
evaluates each MRI parameter independently whereas 
the RF model involves an interaction of terms. The DWI 
sequence is the most prone to imaging artefacts and can 
have low signal-to-noise (SNR) ratio, so in these cases 
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ADC would not be reliable as a predictive feature and 
DCE MRI parameters would be even more important.

Results can be compared with the study by Sung et al. 
[16] who developed a series of CAD models using an 
extensive set of 13 DCE MRI parameters, comparing 
their ability to detect PCa versus single DCE MRI para-
metric maps. Their study was strengthened by histo-
pathology validation but was conducted using an ROI 
approach rather than the voxel-wise approach used here. 
Out of ten semi-quantitative parameters and three quan-
titative parameters, they concluded seven were accurate 
for PCa detection on their own (Kep, Kel, initial slope, 
slope50, wash-in rate, wash-out rate and TTP), but the 
CAD approach with all parameters was more accurate for 
tumour detection.

Limitations and future work
There were study limitations, as data were only obtained 
from one centre and just one software package was used 
to compute DCE MRI parameters. The use of popula-
tion-based AIFs and uniform T1 values rather than a T1 
map was necessary due to artefacts in the data, however 
ideally these would have been determined for each indi-
vidual patient. The highest b-value for DWI acquired 
was b = 1200, which was lower than the mandatory high 
b-value >  = 1400 which is now required for PIRADS ver-
sion 2.1. Hence, voxel values from a high b-value diffu-
sion-weighted images were not included in the analysis. 
Additionally, the voxels were not separated into periph-
eral and transitional zones, which would have enabled 
easier comparison with PIRADS v2.1 recommenda-
tions. Further, the uncertainty in the co-registered data 
was considered in the methodology by excluding voxels 
3.3 mm around the annotated tumour based on our prior 
study results. However, this is uncertainty is an estimate, 
and sensitivity of the results to this value was beyond the 
scope of our study.

Future work will include analysing peripheral and tran-
sitional zones separately and computing radiomics and 
deep learning features to quantify tumour heterogeneity 
which may be more predictive of tumour location than 
the voxel-based parameters used here. In addition, an 
external validation study should be performed to deter-
mine whether the relative importance of DCE MRI 
parameters is consistent across different centres with 
differing imaging protocols. Lack of standardisation for 
DCE MRI is an ongoing challenge, particularly as differ-
ing imaging protocols and processing software can be 
used to derive DCE MRI parameters. The Quantitative 
Imaging Biomarkers Alliance (QIBA) [45, 46] provides 
guidelines for standardised acquisition and processing, 
and through the ongoing development of open access 
resources for perfusion imaging research including the 

Open Science Initiative for Perfusion Imaging (OSIPI) 
[47] this has potential for significant advancement.

Further prostate imaging biomarker studies are 
required to test and validate imaging biomarkers, 
which our team is conducting via multi-centre longi-
tudinal clinical trials (ACTRN12618001810202 and 
ACTRN12621001118897p). These trials aim to identify 
imaging biomarkers which are accurate, repeatable and 
reproducible for early response assessment after pros-
tate RT [48]. 

Conclusions
DCE MRI parameters Ktrans and TTP are the most 
promising quantitative and semi-quantitative bio-
markers respectively, for identifying prostate tumours 
at a voxel-level. Incorporating DCE MRI parameters 
with DWI and T2w in tumour classification models 
results in improved accuracy for tumour detection for 
both low and high grade tumours. DCE MRI parame-
ters should therefore be used alongside DWI and T2w 
imaging to characterise spatial tumour biology for bio-
logically targeted radiation therapy planning. Further 
work is required to standardise DCE MRI parameter 
acquisition, processing, and reporting for this purpose.
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