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The current status and future prospects 
for molecular imaging‑guided precision surgery
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Abstract 

Molecular imaging technologies are increasingly used to diagnose, monitor, and guide treatment of i.e., cancer. In 
this  review, the current status and future prospects of the use of molecular imaging as an instrument to help realize 
precision surgery is addressed with focus on the main components that  form the conceptual basis of intraoperative 
molecular imaging. Paramount for successful interventions is the relevance and accessibility of surgical targets. In 
addition, selection of the correct combination of imaging agents and modalities is critical to visualize both micro-
scopic and bulk disease sites with high affinity and specificity. In this context developments within engineering/imag-
ing physics continue to drive the growth of image-guided surgery. Particularly important herein is enhancement of 
sensitivity through improved contrast and spatial resolution, features that are critical if sites of cancer involvement are 
not to be overlooked during surgery. By facilitating the connection between surgical planning and surgical execution, 
digital surgery technologies such as computer-aided visualization nicely complement these technologies. The com-
plexity of image guidance, combined with the plurality of technologies that are becoming available, also drives the 
need for evaluation mechanisms that can objectively score the impact that technologies exert on the performance of 
healthcare professionals and outcome improvement for patients.
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Introduction
Molecular imaging is increasingly being used to diagnose 
a range of diseases and to monitor and guide therapy, 
particularly in cancer. In this setting, molecular imaging 
often aids in the selection of systemic versus locoregional 
therapies [1]. The combination of diagnostics and therapy 
is commonly referred to as theranostics. In the nuclear 
medicine imaging literature, this approach typically 
refers to the application of radionuclide therapy based 
on demonstration of high expression of a therapeutic tar-
get presented on a diagnostic scan using PET or SPECT. 

However, a less-well recognized aspect of theranostics is 
the use of imaging to guide device-based interventions. 
Prime examples include percutaneous needle placement 
[2] and liver embolization [3]. These approaches are gen-
erally guided by imaging techniques such as ultrasound, 
or CT and SPECT ‘scout’ scans. Image -guided therapy 
equally applies to surgery, a field where precision plan-
ning can directly impact patient care. Image guidance can 
in particular be used to illuminate surgical targets (dis-
eased tissue) or non-targets (healthy tissue that needs to 
be spared).

In surgery, favorable outcomes are achieved by excis-
ing all diseased tissue. At the same time the sever-
ity of complications is related to the invasiveness of 
an intervention. Hence, a balance needs to be created 
between the need for radical removal of disease and 
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minimizing the scope of surgery. Accordingly, there is a 
drive towards minimal-invasive and more personalized 
interventions, while providing patients and healthcare 
professionals more confidence in the efficacy of radi-
cal resection, as well as uncomplicated postoperative 
recovery. From the very beginning of surgical practice 
decision-making has been guided by the tactile and 
visual senses of the operating surgeon. The technologi-
cal advances made in the last century now allow these 
senses to be complemented via the use of preoperative 
imaging roadmaps (e.g., CT, MRI, SPECT and PET) and 
intraoperative target visualization in the form of white-
light endoscopic video-image guidance. This evolution 
is helping minimally invasive ‘key-hole’ approaches to 
gradually replace open surgery. A clear example is the 
rise of robot-assisted laparoscopic surgery [4], which 
some now consider the standard-of-care in the resec-
tion of prostate cancer [5, 6]. The flip side of this min-
imally invasive trend is the loss of “touch” and thus a 
growing reliance on image guidance. An obvious next 
step in advancing image guidance in minimally inva-
sive surgery is the inclusion of intraoperative molecu-
lar imaging strategies. Such strategies can help assist in 
target identification to guide resection of disease sites 
more accurately, while preserving delicate healthy anat-
omy and have led to the development of the concept of 
image-guided surgery [7, 8].

Historically, image-guided surgery has been pursued 
using different modalities. Since the late 1950s fluo-
rescence imaging has been implemented during angi-
ography ([9–11]; Fig.  1). In the 1960s, intraoperative 
X-ray devices started to be used to provide imaging 

as guidance for orthopedic surgical interventions [12] 
and intraoperative ultrasound (US) was introduced to 
guide surgeons during neurological and cardiac sur-
gery. The latter became more widely accepted in the 
late 1970s, mainly for application in general surgery 
[13]. Since the 1980s, radioactive tracers (radiotrac-
ers) have been implemented to highlight lymph nodes 
[14, 15], and later tumors [16]. Although scarce, there 
have even been reports describing the use of intraop-
erative magnetic resonance imaging during neurosur-
gery (first report in 1994, [17]). More exotic modalities 
are the use of magnetic particles [18, 19], optoacoustics 
[20], and Raman spectroscopy [21]. Digital navigation 
based on preoperative computed tomography (CT) 
or magnetic resonance imaging (MRI) roadmaps has 
been seen since the 1990’s with examples in head-and-
neck, neuro- and orthopedic surgery [22]. Combined 
these approaches provide the foundations for evolving 
image-guided surgery.

The success of image-guided surgery is driven by the 
synergy between four main generic components: 1) rel-
evance and accessibility of the target (medicine), 2) 
imaging agents (chemistry/pharmacology/pharmaceu-
tics), 3) modalities used to detect or navigate towards 
the target defined in via imaging (engineering/imaging 
physics), and 4) interpretation of the imaging data (com-
puter visualization). In this  review, the status and future 
prospects of these four aspects of image-guided surgery 
is addressed. In addition, we indicate how each of the 
components can contribute to transition of new concepts 
from a laboratory setting into standard clinical care path-
ways (translational medicine).

Fig. 1  Timeline of the introduction of image-guided surgical technologies
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Results
Target tissues
The concept of image-guided surgery has been most 
extensively pursued in the field of oncology. In this set-
ting, molecular imaging has helped raise the diagnostic 
standard and increase the accuracy with which target tis-
sues can be non-invasively identified. Key aspects herein 
are exemplified by the synergies of modalities such as 
positron emission tomography/computed tomography 
(PET/CT) with receptor-specific radiotracers such as 
[68  Ga]-octreotate, [68  Ga]-DOTATOC [23] and [68  Ga]-
PSMA-11 [24]. Through this combination nuclear 
medicine has been able to demonstrate that receptor-
mediated imaging based on tumor cell-related receptor 
overexpression allows accurate patient staging of lesions 
that are > 2 mm in diameter. Thereby enabling the iden-
tification of patients who may be suitable for surgical 
resection with curative intent.

Image guidance is routinely used to clearly deline-
ated organs such as blood vessels (angiography; indo-
cyanine green (ICG; [25], US [26], X-ray [27]), bile ducts 
(ICG [28]), parathyroid (autofluorescence [29, 30]), 
lymph nodes (ICG and fluorescein [31, 32]), bony struc-
tures (X-ray; [33]), and macroscopic tumor lesions (US, 
5-ALA; [34, 35], Fig.  2). Despite the widespread imple-
mentation of these applications the real promise of image 
guidance lies perhaps in indications wherein radical 
resection of microscopic or diffuse infiltrative lesions is 
required, with adequate safety margins. Unfortunately, 
application of image guidance in these indications also 
provides the toughest challenges as it requires a combi-
nation of tracers with high affinity and specificity for dis-
eased tissue, and the generation of target to background 
contrast that allows accurate detection with the chosen 

instrumentation. An important drawback herein is that 
diffuse infiltrative cancers may directly translate into low 
signal intensities, limiting sensitivity for image guidance. 
The effect of signal intensity becomes even more impor-
tant when realizing that during excision a safety margin 
in the range of 5–10  mm often has to be applied. This 
means that detection needs to be efficient through a sub-
stantial amount of tissue and therefore attenuation and 
scattering of signal are important considerations.

From the perspective of having high signal intensity 
and low background, radiotracers are generally superior 
to optical tracers (including optoacoustics and lifetime 
imaging). With regard to having low signal attenuation 
and being subject to scattering, X-ray is the superior 
modality, followed by radiotracer-based detection, then 
US and lastly, optical tracers ([36, 37], Fig. 3). An impor-
tant limitation for all optical approaches is that these are 
subjected to tissue-interactions during target illumina-
tion and/or signal emission; an effect that is smallest for 
optoacoustic applications [38]. Next to the issue of sen-
sitivity, identification of small lesions requires an imag-
ing modality with a high spatial resolution. Herein optical 
technologies, and in particular fluorescence, are supe-
rior compared to respectively US, radiotracer-based and 
X-ray detection.

 When looking at the practical implementation of the 
above-mentioned modalities, some basic principles can 
be deduced. First and foremost, all routine optical imag-
ing indications remain confined to superficial assessment 
(e.g., endoscopic procedures of the mucosal surface of 
the bowel or airways), whereby the impact of light atten-
uation of the emitted signal and background light can be 
kept to a minimum. In addition, these applications tent 
to rely on relatively ‘simple’ chemicals. In a relatively high 

Fig. 2  Schematic representation of the different types of imaging and their targeting principles. Preoperative imaging (radiology, nuclear 
medicine), morphological (anatomy), physiological (tissue level) and molecular imaging (cellular level) each suffer from a different signal 
attenuation, resulting in a different penetration depth
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dose these agents help study physiological aspects such 
as vascular-, lymphatic-, and bile- flow [39]. Compared 
to optical imaging, US can help to increase the detec-
tion depth up to a certain degree and allows for real-time 
dynamic visualization. That said,  this modality does not 
really facilitate molecular imaging beyond the target-
ing of receptors in the epithelium of blood vessels  due 
to the lack of contrast extravasation. Optoacoustics, on 
the other hand, provides an interesting integration of the 
favorable optical high spatial resolution and US char-
acteristics. However, for lesions located deeper below 
the tissue surface detection based on radioactive signals 
is preferred. This preference is not only driven by the 
modality’s signature to be able to penetrate overlaying 
tissue during the resection, but is also strengthened by 
the ability to non-invasively create a preoperative ‘imag-
ing roadmap’ that accurately visualizes the distribution of 
the imaging agent (preferably in three-dimensions (3D, 
[40–42]). Such a roadmap allows the operating surgeon 
to only pursue a targeted resection when there is suf-
ficient evidence that lesions are effectively identified. In 
addition, this preoperative roadmap helps to accurately 
locate (satellite) lesions that lie beyond traditional dis-
section templates [43]. While intraoperative CT [44] or 
MRI [45] also facilitate surgical planning via similar 3D 
roadmaps, the low contrast sensitivity of these modali-
ties makes them less suitable for molecular imaging [46]. 
Hybrid approaches wherein the strengths of individual 
modalities are integrated could realise a best-of-both-
worlds scenario [47, 48].

Trends in imaging agents for surgery
The range of applications wherein interventional molecu-
lar imaging is having clinical impact is increasing through 
advances in medical chemistry and radiochemistry. In 
particular, there has been significant development in the 
design of optical- (e.g., fluorescence, Cherenkov, optoa-
coustics, Raman) and radioisotope-based (e.g., gamma 
rays and beta particles) agents [49, 50].

From a chemical perspective, most of the efforts 
towards designing disease specific imaging agents find 
their origins in nuclear medicine and its subdiscipline 
of radiochemistry. Radioguided surgery applications for 
sentinel nodes (radiocolloids, [51]), somatostatin recep-
tor overexpressing lesions (peptides, [52, 53]) and pros-
tate specific membrane antigen (PSMA) expressing 
lesions (small molecules, [54]) have established 99mTc 
(140 keV) and, to a lesser extent, 111In (gamma rays with 
photon energies of 171 and 245 keV) as the most favora-
ble radioisotopes [55] for clinical use. This is primarily 
driven by the common availability of 99Mo/99mTc genera-
tors in clinics world-wide and 111In being an accessible 
long-lived reactor product. This further focused tracer 
design, with recent examples of widely implemented 
agents being 99mTc-PSMA-I&S [56], (ICG-)99mTc-nano-
colloid [48] and 111In-octreotide [57]. Besides the appli-
cation-specific design of radiotracers there are various 
attempts to use off-the-shelve PET tracers for image 
guidance by exploring i.e., their 511  keV gamma rays 
[58], beta particles [59] and/or Cherenkov light [60]. 
Advantages of the use of radiotracers are that they can 
be applied under a micro-dosing regime, are compatible 
with quantitative biodistribution studies (%ID/g) and 
support non-invasive pre-operative imaging approaches 
such as scintigraphy, single photon emission computed 
tomography (SPECT) and PET (Table 1).

Second in popularity is the development of fluores-
cent tracers intended for superficial lesion identifica-
tion. Where fluorescence microscopy tends to focus on 
use of dyes in the 400-700 nm range, fluorescence-guided 
surgery efforts often tend to explore the theoretically 
favorable interaction between near-infrared (NIR) fluo-
rescence (> 750  nm) and tissue [117]. NIR wavelengths 
are said to allow deeper penetration depth without visual 
obstruction of the surgical field caused by the dye. Inter-
estingly, there is mounting evidence that fluorescence 
emissions outside of the NIR range equally hold promise 
for in-human use [118], with a prime example being the 
FDA-approved use of 5-ALA in neurosurgery [79]. While 
fluorescence imaging cannot be used to obtain preinter-
ventional roadmaps, fluorescent agents are increas-
ingly used in combination with some form of diagnostic 
nuclear medicine scan (see Table  1 for examples). This 
concept is most valid when the fluorescent and nuclear 

Fig. 3  Tissue penetration of different imaging modalities. 
Each imaging modality uses another type of signal for image 
reconstruction e.g., X-rays, US, gamma rays and optical waves and 
therefore suffers from a different signal attenuation resulting in a 
different penetration capability of the resulting signal
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agents have the same target affinity, pharmacokinetics 
and can be applied in the same dosing regimen. Unfor-
tunately, the molecular properties of the relatively ‘bulky’ 
fluorescent labels can exert a substantial influence on 
the affinity and pharmacokinetics of small-molecule and 
peptide-based tracers [119]. There is even literature sug-
gesting that fluorescent dyes may alter the pharmacoki-
netics of ‘large’ nanobodies [120] and antibodies [121]. 
An additional downside of fluorescent agents is that their 
biodistribution cannot be assessed quantitatively based 
on fluorescence intensity alone, due to autofluorescence, 
signal scattering and limited tissue penetration of the sig-
nal. Moreover, in contradiction to the low administered 
mass of radiotracers and subsequent lack of biological 
effects with most agents [122], fluorescent tracers tend 
to be used at pharmacologically-active dose levels [123]. 
Use of such high dose levels may reduce the number of 
false negative results but is also likely to increase non-
specific (background) staining. This enhances the num-
ber of both false negatives (due to loss of contrast) and 
false positive results. Hereby is it must be noted that fluo-
rescent dye properties such as lipophilicity, charges and 
level of serum binding influence the pharmacokinetics, in 
particular the mechanism of clearance (Fig. 4). For obvi-
ous reasons the effect of the latter can be quite critical 
when the surgical target is located directly within (e.g., 
kidney or liver) or immediately downstream of the renal 
of hepatobiliary clearance route (e.g., prostate or bowel) 
where unbound excreted tracer can severely hamper 
lesion identification.

A strategy to overcome the limitations of individual 
modalities is the use of bimodal/hybrid imaging agents. 
Herein, nuclear medicine signals tend to be comple-
mented with optical [124], magnetic [125], or US [126] 
contrast. In particular, nuclear/optical applications have 

demonstrated value in the surgical setting [50]. Combin-
ing two signatures in a single imaging agent allows for 
detection by two independent modalities, thereby sup-
porting all relevant aspects in pre- and intraoperative 
imaging. As can be derived from the above, such hybrid 
agents will have different detection sensitivities for the 
different signatures. Ideally, the fluorescence sensitiv-
ity of hybrid agents is improved. However, the means to 
do so are limited. Hereby it is important to note that 
self-quenching of fluorescent dyes occur when dyes that 
reside on the same molecule are located within 8  nm 
of each other [127, 128]. For most imaging agents this 
means that there is an optimum in the number of dyes 
used as label e.g., 1 to 1 molar ratio [129]. This essen-
tially means that improvements can only be realized by 
tuning the fluorescence brightness of dyes (a multiplica-
tion between i.e., molar extinction coefficient and the 
quantum yield). The most common  dyes  used in image-
guided surgery applications are cyanine dyes, wherein 
extension of the length of the -C = C- bridge facilitates 
the use of higher wavelengths, but at the same yields sub-
optimal trans-confirmations [130]. As a result analogues 
of the cyanine dye Cy7.5 such as the commonly used ICG 
have a low brightness [131]. Introduction of charged moi-
eties e.g. -SO3

− has been shown to enhance the bright-
ness [132].

Trends in medical devices for interventional imaging
The ideal intraoperative detection modality would proba-
bly be best described as a device that: 1) has a high sensi-
tivity for signal detection, 2) only marginally suffers from 
interference by non-specific background signal (high 
specificity) and 3) maintains or improves present surgical 
logistics. These are generic wishes that transcend across 
all modalities.

Fig. 4  Tracer clearance. Examples of contrast/ imaging agents that are either excreted through the liver or through the renal system depending on 
their chemical and pharmacokinetic characteristics
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It  is  no surprise that the imaging physics drive the 
design of a medical device used for interventional imag-
ing. Conventional X-ray approaches such as CT and 
fluoroscopy are often impractical for implementation 
in the surgical suite, and accordingly, surgical interven-
tions more often implement X-ray imaging in the form 
of a c-arm design [133]. In some cases, even C-arms 
prove to be incompatible with the surgical setup [134]. 
US requires a relatively small transducer that contains an 
integrated pulsed sound source and detector capable of 
registering reflected sound waves [135]. As air interferes 
with the detection, the transducer needs to be placed in 
direct contact to tissue, often requiring the use of con-
ductive gel. Optical technologies such as fluorescence 
imaging does not require direct contact with tissue for a 
light source to excite fluorophore molecules and a detec-
tor to collect the light that is subsequently emitted [136]. 
Since light sources including ambient light [137], plenum 
light [138] and light emitted by optical tracking systems 
[139] can interfere with signal detection, fluorescence 
applications often require dimming of interfering light 
sources such as the operating room (OR) lights. Radio-
guidance modalities are purely designed to detect radi-
opharmaceuticals that intrinsically generate a signal (i.e., 
gamma rays or beta particles). However, to determine the 
position of the emission source within the patient (i.e., 
the radiopharmaceutical), collimation is required. Inter-
estingly, surgical modalities have also been combined in 
hybrid, or multimodal, devices. Examples being: a C-arm 

with integrated gamma detector [140], gamma detector 
with integrated fluorescence imaging [141], several ver-
sions of SPECT or gamma detection integrated with US 
[142, 143] and beta detection integrated with optical 
coherence tomography [144].

Effective application of imaging modalities during sur-
gery is highly dependent on the degrees of freedom with 
which the modality can be positioned relative to the tar-
get. In open surgery (Fig.  5), cameras are not necessar-
ily restricted in size other than the footprint that they 
occupy in the OR and the investment costs. Handheld 
probes (gamma [145], fluorescence [146], US, and mag-
netic [147]) as well as mobile gamma and fluorescence 
cameras [148] set the standard today (Fig. 5). The designs 
of these modalities can vary substantially. For example, 
probes are often provided in different detection angles 
(e.g., 0°, 45° and 90°) and mobile cameras are available 
as handheld device (e.g., Crystal cam [149], PDE-neo II 
[148]) or attached to a mechanical positioning arm (e.g., 
Sentinella or VITOM). Detection angles and size reduc-
tions can facilitate the accessibility of certain restricted 
anatomies, while mechanical arms offer stable position-
ing but often result in loss of dynamic flexibility. Tak-
ing fluorescence-guided surgery systems as an example, 
enlargement of detectors and excitation light sources can 
provide a boost in sensitivity [148]. This is a feature that 
may substantially increase utility, but also comes with 
increases in cost. While  common  practice, improve-
ments in sensitivity do not necessarily result in an 

Fig. 5  Detectors in open and laparoscopic surgery. The various kind of intraoperative detectors used for image guided surgery (open and 
laparoscopic) including their movement’s degrees of freedom
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enlarged footprint, as they may also come from improved 
detector materials and refined signal processing [106, 
138].

A stated earlier surgery is increasingly performed in a 
minimally invasive setting (Fig. 5, laparoscopic surgery). 
While the signals that need to be detected tend to stay 
the same, this change in environment requires a sub-
stantial change in the design of an imaging modality. The 
main driving factor herein can be attributed to the physi-
cal restrictions that are inherent in “key-hole surgery”, 
meaning that the entry point limits both instrument size 
and movements [150, 151]. Interestingly, minimally inva-
sive interventions tend to go hand-in-hand with the loss 
of tactile sensing and thus, increasing the demand for 
‘molecular-sensing’ technologies. For such modalities 
miniaturization is the focus of the current general design 
trend. In most instances this translates to a loss in sensi-
tivity when compared to the open surgery setting. A key 
example herein is fluorescence guidance [152]. Uniquely 
for radioguided surgery the gamma-detectors used in 
probes remain similar for both the open and laparo-
scopic devices, thus preserving sensitivity [150]. Follow-
ing the design of laparoscopic surgical instruments there 
is a trend to move from ‘rigid’ laparoscopic modalities to 
‘steerable’ ones. Examples are the use of tethered drop-in 
detectors for US [153, 154], gamma-tracing [155], beta-
tracing [156].

Trends in digital surgery
The use of target-specific contrast agents and advanced 
interventional modalities aligns nicely with the promis-
ing new sub-discipline of digital surgery. The  concept 
behind digital surgery joins the power of robotics, world 
class instrumentation, advanced imaging and visualiza-
tion, data and analytics. One may argue that an ideal pro-
cedural work flow would constitute of: 1) preoperative 

target assessment, 2) intraoperative navigation towards 
the target, and 3) intraoperative confirmation of the tar-
get location and margins [157]. A way to realize integra-
tion between these elements is through the digitization 
of the signals and the use of dedicated algorithms to align 
and interpret complementary outputs (Fig. 6).

One key aspect is the direct registration of preoperative 
imaging information onto the surgical field in the OR. 
Here, registration can take place based on endogenous 
structures or exogenous fiducials (also called markers). 
The most straight forward implementation of such reg-
istration concepts is surgical navigation, meaning that 
the operating surgeon can position the surgical instru-
ments in the geographic context of preoperative images 
[158]. This approach is thoroughly embedded in inter-
ventions on rigid anatomies, e.g., orthopedic-, neuro- 
and head-and-neck surgery [22, 159, 160]. Navigation is 
used, for example, to guide the placement of patient tai-
lored 3D-printed prostheses in pelvic reconstructive sur-
gery [161]. In recent years, the concept of intraoperative 
navigation has been extended to soft-tissue interventions 
[162, 163]. However, in these soft-tissue applications real-
time intraoperative imaging and therefore other modali-
ties, such as US [164, 165], gamma probes [166] and/or 
fluorescence imaging [167, 168], are required to confirm 
the accuracy of the intraoperative navigation process.

Alternative to registration of preoperative images to 
the patient, intraoperative tracking  and interventional 
modalities using exogenous fiducials, can help register 
the output of an imaging modality to a specific anatomi-
cal location in the patient; a concept used to generate 
so-called freehand scans. Freehand options have been 
reported for US [169], beta particles [170], gamma-ray 
[171], fluorescence [172], and magnetic signals [173], and 
have been utilized in both open and laparoscopic/robotic 
surgery [174]. Unique for open surgery applications is 

Fig. 6  Schematic explanation of the workflow in a digitally enriched surgery. Starting with the input of patient data for surgical planning. Followed 
by the execution of the digitally enriched surgery, including input of preoperative and intraoperative scans, tool tracking and navigation towards 
the target. Afterwards the surgical outcome is assessed on pathological analysis, surgical complications and if/how much the quality of life has been 
impacted
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that larger detectors can be used (e.g., hand-held gamma 
cameras [175]) and that the rotational movement in gen-
eral allows for better coverage. Uniquely, the use of a 
‘drop-in’ gamma probe has allowed for freehand SPECT 
to be performed using a robotic platform [176]. A big 
advantage of freehand scans is that they make an over-
view of the situation that is encountered in the surgical 
setting. A downside, however, is that such scans are gen-
erally lower in quality and are often analyzed by the sur-
geons rather than expert radiologists or nuclear medicine 
physicians.

Another, perhaps more obvious, aspect of digital sur-
gery is related to computer visualization applications. 
Such techniques help improve the interpretation of 
imaging data [177]. Intraoperatively, use of computer 
visualization predominantly extends the use of imaging 
modalities such as CT, US, gamma- and fluorescence 
cameras. Hereby dedicated algorithms can help enhance 
feature extraction and/or interpretation. A key example 
is the visualization of (NIR) fluorescence signals in arti-
ficial colors to improve contrast: white [178], blue [179], 
pink [180], or as rainbow coloration [181] whereby green 
(color for which the human eye is most sensitive) has 
been most abundantly used. Alternatively, signal intensi-
ties can be boosted digitally, where again examples can 
be found in fluorescence imaging [106]. A more advanced 
version of computer visualization is automated feature 
extraction and data quantification. Feature extraction can 
help simplify surgical and/or pathological tissue interpre-
tations [182], but at the same time can be used to drive 
kinematic assessments of instrument movements [183].

While application of artificial intelligence in the realm 
of image-guided surgery is still limited [184], it is highly 
likely that such efforts will intensify in the future. In fact, 
this is an area where we can expect a significant impact 
over the coming years.

Future prospects
Clinical translation of novel image-guided surgery tech-
nologies beyond research and development requires 
establishment of an evidence-base that demonstrates 
the safety and effectiveness of these procedures, while 
reimbursement requires evaluation of cost-effectiveness. 
Strictly speaking, image-guided surgery technologies 
need to provide either better outcome for the patient or 
improve the workflow for medical professionals, if not 
both, and at a reasonable cost. In this regard, patient ben-
efit can be scored by looking at short-term complication 
rates and long-term outcomes across cohorts with and 
without use of image guidance. Unfortunately, availabil-
ity of such data is limited as most studies seem to focus 
on proof-of-principle studies. Exceptions to the rule are 
represented by reports for 5-ALA [185], sentinel node 

procedures in melanoma patients [186], ICG-99mTc-
nanocolloid [48, 187, 188], and  99mTc-PSMA-I&S [189, 
190]. Assessment of the impact of implementing image-
guidance on surgical procedural performance, is tradi-
tionally performed via use of qualitative questionnaires 
and the recording of surgical time [191]. Conceptually, it 
is challenging to make objective and quantitative assess-
ments regarding the adequacy of surgery or a surgeon’s 
performance, since many individual factors may impact 
outcomes. Recently, as result of the performance-guided 
surgery paradigm, kinematic assessments have been 
put forward as a means to score the proficiency of a 
surgeon [192]. This approach  has the potential to pro-
vide short term means to define the added value of an 
image-guidance technology [183]. Uniquely, assessment 
of the surgeon’s performance based on kinematics will 
not only allow study of how chemical and engineering 
efforts enhance the surgical experience but will also allow 
assessment of how these approaches complement each 
other. Ultimately such assessments can be related to out-
come data.

As image-guided surgery solutions are quite often 
technically challenging. In essence, ethics and regula-
tions provide a healthy translational hurdle to protect 
patients, while financial aspects may also constrain 
development. from a practical perspective, lead com-
pounds and detection device prototypes must be devel-
oped and refined in research setting and often not 
within the domain of patient care. While this helps 
preventing the patient exposure to potentially harm-
ful technologies, it also means that some approaches 
can become more ‘technology-driven’ than ‘clinical-
need-driven’. Ideally all developments should be done 
with clinical translation in mind and based on real-life 
unmet surgical needs. But even with these prerequi-
sites, it is extremely challenging to translate laboratory 
findings to the clinic. An example of the challenges 
faced is the extrapolation of findings in small ani-
mal disease-models to patients. Besides the obvious 
anatomical differences, which will reflect on tracer 
pharmacokinetics, the performance characteristics 
of modalities employed in small animals are not nec-
essarily recapitulated in human instrumentation [50]. 
Regularly, images depicting surgery in mice that claim 
translational potential are published, but one should 
perhaps approach such claims with healthy skepticism. 
Phantoms can provide a size matched intermediate to 
test modalities on, but at the same time these settings 
are even more artificial than small animal disease mod-
els. This leaves large animal models like those used for 
surgical training purposes [180] as prime candidates for 
assessment of clinical potential of novel intraoperative 
imaging approaches. In large animals, the same type of 
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tracers, modalities or software solutions can be used 
as are used in patients (note: devices used on animals 
can no longer be used for clinical purposes). These can 
then also be validated in a surgical environment that is 
close to the intended use. A limitation is that large ani-
mal surgical-training-models are less suited as disease 
models as creation of such models is a costly and time-
consuming ordeal that raises several ethical issues. An 
approach that can provide a solution from a technical 
perspective but at the same time demands ethical con-
siderations is the emerging possibility wherein com-
panion animals with cancer become potential subjects 
for new technology assessments [193]. An example 
can be found in in dogs with naturally acquired tumors 
[194]. Together, it seems likely that both small- and 
large-animal evaluations are needed to best prepare an 
image guidance technology for clinical evaluation. Such 
evaluations, combined with toxicity testing, will gather 
the evidence needed to apply for ethical approval for 
first-in-human evaluations.

Clinically surgical tasks are divided according to 
anatomy, disease indication and even the type of sur-
gical intervention. This helps ensure expertise for sur-
geons and helps create some form of quality assurance 
from a healthcare perspective. From a technological 
perspective, however, most of these boundaries seem 
irrelevant. Physical and technical factors (e.g., open vs 
laparoscopic, soft tissue vs rigid anatomies) drives the 
design of new technologies. That said, most chemi-
cal and engineering efforts mentioned above still find 
applications in multiple settings. The success stories 
in the field of image-guided surgery are based on tech-
nologies that maximally align with innovations made in 
other fields. For example, initial work on fluorescence 
laparoscopy presented in prostate cancer surgery [195] 
was later transferred to breast surgery [196] and the 
technique is now also implemented during i.e., lapa-
roscopic colorectal surgery [94, 197]. Such knowledge 
sharing can be considered highly valuable as it helps 
boost innovation across disciplines.

Conclusion
With all the promising technologies being developed 
under the umbrella of image-guided surgery, it remains 
essential to maintain a helicopter view of this highly mul-
tidisciplinary and rapidly expanding field. Hereby, we 
need to make sure that the clinical needs remain aligned 
with tracer chemistry, device physics and the increasing 
digitization of the operating room.
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