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Abstract 

Background:  To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image 
quality (IQ) during transarterial chemoembolization (TACE).

Methods:  From 1/2015–5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 
patients (18 m, 8f; 69.7 years ± 10.7 SD) of limited IQ were included. Post-processing of the original raw-data sets 
(CACT​Org) included application of a 3D-motion correction algorithm and bone segmentation (CACT​MC_no_bone). Four 
radiologists (R1-4) compared the images by choosing their preferred dataset and recommending repeat acquisition in 
case of severe IQ-impairment. R1,2 performed additional grading of intrahepatic vessel visualization, presence/extent 
of movement artifacts, and overall IQ.

Results:  R1,2 demonstrated excellent interobserver agreement for overall IQ (ICC 0.79,p < 0.01) and the five-point 
vessel visualization scale before and after post-processing of the datasets (ICC 0.78,p < 0.01). Post-processing caused 
significant improvement, with overall IQ improving from 2.63 (CACT​Org) to 1.39 (CACT​MC_no_bone;p < 0.01) and a 
decrease in the mean distance of identifiable, subcapsular vessels to the liver capsule by 4 mm (p < 0.01). This proved 
especially true for datasets with low parenchymal and high hepatic artery contrast. A good interobserver agreement 
(ICC = 0.73) was recorded concerning the presence of motion artifacts, with significantly less discernible motion after 
post-processing (CACT​Org:1.31 ± 1.67, CACT​MC_no_bone:1.00 ± 1.34, p < 0.01). Of the 27 datasets, ≥ 23 CACT​MC_no_bone 
were preferred, with identical datasets chosen by the readers to show benefit from the algorithm.

Conclusion:  Application of a 3D-motion correction algorithm significantly improved IQ in diagnostically limited 
CACTs during TACE, with the potential to decrease repeat acquisitions.
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Background
Multiple interventions profit from C-arm com-
puted tomography (CACT) as a guidance tool [1–11]. 
Improved soft-tissue resolution as well as elimination 
of vessel superposition with resulting high-precision 
lesion detection and sophisticated catheter navigation 
represent important attributes that have led to studies 
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reporting advantages of CACT over 2D digital subtrac-
tion angiography (DSA) [1–5, 12–18]. A meta-analysis of 
TACE interventions in hepatocellular carcinoma (HCC) 
reported an increase in sensitivity of up to 38% in favor of 
CACT concerning detection of tumors and tumor feed-
ing arteries [6]. With radiation exposure during CACT 
being sizeable, its use may be considered as a preliminary 
investment for optimal feeder detection and navigational 
planning. However, this investment can be rendered 
pointless by insufficient image quality (IQ), originating 
predominantly from the method’s vulnerability towards 
motion. Motion artifacts due to patient movement on 
the angiography table, breathing or cardiac pulsation 
may cause loss of critical periprocedural information as 
well as severely compromise the interventional outcome 
[1–5]. Based on a vascular reconstruction algorithm 
(CAVAREC, Siemens Healthcare, Forchheim, Germany), 
initially developed for motion compensation in 3D car-
diac imaging studies [19–21], its beneficial effect on diag-
nostic CACT datasets by evaluating both objective and 
subjective IQ criteria, has been previously described [22, 
23]. While the mean dataset IQ in the database was ser-
viceable, the current study focused on severely impaired 
CACT images to diminish any influence of a CACT’s 
good baseline image quality on the algorithm’s effective-
ness and to emphasize the potential value of CACT post-
processing methods in decreasing motion artefacts.

The aim of this retrospective single-center study was 
thus to evaluate the feasibility and effectiveness of a 
motion-compensating, 3D reconstruction technique on 
CACTs with substantially impaired image quality and to 
identify determinant factors for its effectiveness.

Methods
Our hospital’s Institutional Review Board (Ethics com-
mittee Hannover Medical School; Nr. 8316_BO_K_2019) 
approved this retrospective study. All patients gave writ-
ten consent. The indication for TACE was obtained by 
an inter-disciplinary tumor board. All TACE procedures 
from 1/2015 to 5/2021 (n = 644) were retrospectively 
reviewed. Based on previously published work deter-
mining influencing factors on image quality in CACTs as 
well as the IQ-improving effect of the 3D motion com-
pensating algorithm, we purposefully selected datasets 
with poor image quality as main inclusion requirement 
(see Fig.  1), represented by substantially limited visuali-
zation of both central as well as peripheral hepatic arter-
ies, including distinct blurriness of vessel margins and/ 
or severe cardiorespiratory motion artifacts [22, 23]. 
The study population thus comprised of 27 CACTs in 26 
patients (18 m, 8 f; mean age: 69.7 years ± 10.7 SD)– one 
patient having received a CACT of both the left and the 

right liver artery due to variant hepatic anatomy—with 
patient characteristics shown in Table 1.

TACE procedure
Ultrasound-guided assessment of the femoral artery was 
performed after application of local anesthesia. Mesen-
terico-portography, sequential hepatic angiography and 
a CACT were acquired to assess vascular anatomy, to 
analyze tumor-feeding arteries and to plan an adequate, 
supraselective catheter position for treatment. The arms 
were elevated to avoid streaking artifacts. Patients were 
instructed to hold their breath for 10  s, which—unlike 
most patients in every-day practice—the majority of 
patients included in this study was not able to perform 
sufficiently, causing breathing motion artifacts (n = 16) 
of different proportions. CACT was obtained using the 
manufacturer’s preset (Artis Q: 6  s DR DynaCT, acqui-
sition time of 6 s, fixed-tube-detector distance of 0.9 m, 
total acquisition angle of 200°, projection increment of 
0.5°, 396 projectional images, 1  k-matrix, zoom factor 
0, FOV 48  cm, system-detector dose per image of 0.36 
lGy; Artis pheno: 5  s DR DynaCT, acquisition time of 
5  s, fixed-tube-detector distance of 0.9  m, total acquisi-
tion angle of 200°, projection increment of 0.5°, 396 pro-
jectional images, 1 k-matrix, zoom factor 0, FOV 52 cm, 
system-detector dose per image of 0.36 lGy). Contrast 
medium was injected in accordance with our standard 
protocol for diagnostic catheter (n = 15, flow rate 5  ml/
sec) or microcatheter injections (n = 12, flow rate 2.5 ml/
sec). Doxorubicin-loaded drug-eluting beads of 30–60 
um size (HepaSphere®, Merit Medical Europe, Maas-
tricht, Netherlands) were injected into the tumor-feeding 
artery via the microcatheter (Merit Maestro™, Tenor™ 
0.014 guidewire, Merit Medical Systems, Utah, USA), 
with stasis in the tumor-feeding arteries delineating the 
endpoint of the intervention.

Imaging and post‑processing
All TACE procedures were performed by board-certified 
interventional radiologists at our institution on either a 
monoplane, ceiling-mounted or monoplane, robotic-
arm-mounted angiographic system (Artis Q®, ARTIS 
pheno®, Siemens Healthcare, Forchheim, Germany) 
as available during clinical routine. Image acquisition 
commenced simultaneously to contrast injection, with 
the C-arm mounted X-ray source and detector rotating 
around the patient on a circular trajectory. The 3D recon-
struction prototype software, developed and modified by 
the manufacturer (Siemens Healthcare, Forchheim, Ger-
many), was installed on a dedicated workstation (syngo X 
Workplace®, Software Version VD20C, Siemens Health-
care, Forchheim, Germany) and applied to the original 
raw datasets. These were retrospectively modified by the 
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algorithm’s utilization of iterative motion estimation and 
compensation of a 4D deformable motion, as previously 
published elsewhere [19–23]. For motion correction of 
selective CACT images of the hepatic arteries, we used 
500 iterations in total and an iteration update/display 
every 100 iterations. The step size was 2 mm and motion 
resolution 25 mm. Manual volume punching of station-
ary high-contrast objects such as bones or extraneous 
materials was performed by a blinded radiologist (SKM), 
as these could lead to potential falsifications of motion 
correction in the liver. The aforementioned post-process-
ing, enabled quantitative and qualitative comparisons 
between two datasets: the original CACT (CACT​Org) 
and the CACT after motion correction and bone removal 
(CACT​MC_no bone).

Image interpretation and analysis
Two radiologists of 10 and 3  years of experience (JBH, 
LSB: reader 1,2), blinded to the nature of the data set 
(CACT​Org vs. CACT​MC_no bone), performed side-by-side 
grading of randomly assigned images before and after 
the application of the motion compensating algorithm, 

Fig. 1  Flow chart of patient selection in the present study

Table 1  Patient demographics and image quality data

Abbreviations: CACT​Org original C-Arm CT, CACT​MC no bone C-arm CT after 
motion correction and bone segmentation, IQ Image quality, TACE transarterial 
chemoembolization

Age (years) 69.7 ± 10.7

Gender

  Female (%) 8 (30.8)

  Male (%) 18 (69.2)

CACT before TACE intervention

  Included 39

  Excluded (catheter dislocation, moderate IQ) 13

Bad IQ due to (several may apply):

  Cardiorespiratory motion artifacts 16

  Low hepatic artery-to-parenchyma enhancement 
ratio

14

3D motion recompensation algorithm

  Technical feasibility 27

  Image preference concerning TACE intervention

R 1, 2 R 3,4
    CACT​MC_no bone > CACT​Org 22 19

    CACT​MC_no bone = CACT​Org / 5

    CACT​MC_no bone < CACT​Org 5 3
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with concern to the following categories: 1) overall image 
quality (grade 1–3: good, moderate, poor), 2) vessel vis-
ualization and sharpness (i.e., clear visualization of all 
hepatic arteries, including subsegmental and subcapsular 
branches, grade 1–5), presence of artifacts (preponder-
antly induced by breathing or cardiac motion), and their 
image preference for TACE intervention (for details see 
Table 2).

To further validate the algorithm’s effect and to repro-
duce a realistic clinical setting, both the original as well as 
the post-processed datasets were additionally offered to 
two blinded radiologists of 11 and 4 years of experience 
(CvF, CLAD: reader 3,4), to document their preferred 
dataset for a transarterial chemoembolization of the liver, 
their recommendation for additional imaging (e.g., repeat 
CACT), and to compare the datasets by using a five-point 
Likert scale.

To quantitatively compare the hepatic artery deline-
ation on both cone-beam CT datasets, the furthest 
peripheral position with preserved demarcation of the 
contrast-enhanced vessel lumen within the hepatic artery 
branch of each segment to the liver capsule was deter-
mined in a thin, axial multiplanar reformation (1  mm 
in both modalities; JBH and LSB in consensus). Addi-
tional measurements of intraarterial enhancement in the 
common, right or left hepatic artery as well as in areas 

of maximum liver parenchyma enhancement were per-
formed (JBH and LSB in consensus), creating a ratio of 
the contrast in the liver arteries to the contrast in the 
liver parenchyma. For intravascular contrast quantifica-
tion, a circular region of interest, fitted to at least two 
thirds of the vessel diameter and located 2  cm distally 
of the catheter tip in a thin-sliced, coronal reformat. For 
image assessment, all readers were able to use thin-sliced 
multiplanar reformats (slice thickness B 0.49  mm) in 
axial, coronal, sagittal or oblique orientation and maxi-
mum intensity projections (MIP) on a 3D PACS worksta-
tion (Visage 7.1, Visage Imaging, Berlin, Germany).

Statistical analysis
Descriptive statistical analyses of the patient’s demo-
graphic and angiographic data are presented as mean 
values ± standard deviation (sd). Performance of a Sha-
piro–Wilk test showed a normal distribution of values 
(p > 0.05). A two-sided t-test was performed to assess the 
differences between CACT​Org and CACT​MC_no bone by 
measuring the distance of delineated subcapsular vessels 
in each liver segment to the capsule. For the comparison 
of image quality with regards to vessel visualization, pres-
ence and amount of movement artifacts as well as overall 
image quality, a paired Wilcoxon-test, an interrater and 
an intermodality agreement were calculated, using the 

Table 2  Summary of CACT IQ evaluation criteria

Abbreviations: CACT​Org original C-Arm CT, CACT​MC_no boneC-arm CT after motion correction and bone segmentation, HU Hounsfield Units, IQ Image quality, ROI region 
of interest, TACE transarterial chemoembolization

Overall IQ

  Grading 1: Good

2 Moderate

3: Poor

Vessel visualization

  Grading 1: clear visualization of all hepatic arteries including fine peripheral hepatic arteries at the subcapsular region 
without blurring

2: clear visualization of hepatic arteries up to subsegmental level without blurring, but indisctinct fine periph-
eral hepatic arteries at the subcapsular region

3: blurriness of hepatic arteries but traceable up to subsegmental level

4: moderate blurring of hepatic arteries with pruning of subsegmental arteries

5: severe blurring of hepatic arteries with difficulty in tracing segmental hepatic arteries

Presence of (cardiorespiratory) artifacts

  - Diaphragmatic motion d Definition: Motion artifact width of right hemidiaphragm on sagittal image

    Grading 0: none (< 0.1 mm)

1: mild (0.1- 2 mm)

2: moderate (2.1–3.5 mm)

3:severe (> 3.5 mm)

Hepatic artery-to-parenchyma ratio Definition: Ratio of intraarterial HU value 2 cm distally to the catheter tip (ROI fitted to two thirds of the vessel 
diameter) and maximal parenchymal enhancement

Preferred dataset for TACE CACT​Org vs. CACT​MC_no bone

Need for additional imaging Yes/no
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two-way intra-class correlation coefficient with abso-
lute agreement (ICC 2.1). This was also used to calculate 
interobserver agreement of the aforementioned two radi-
ologists. Values ≥ 0.75 represented excellent agreement, 
those from 0.6–0.74 good, from 0.4–0.59 fair, and < 0.4 
poor agreement [24].

Statistical analysis was conducted with R (version 3.6.1, 
http://​www.r-​proje​ct.​org with package ‘‘IRR’’ version 
0.84.1).

Results
Successful application of the algorithm to the datasets 
proved feasible in all cases. Significantly better IQ as well 
as an excellent interobserver agreement (ICC: 0.79) could 
be demonstrated by comparing the blinded radiologists’ 
gradings of overall IQ (1: good – 3: poor) before and after 
algorithm application, with CACT​Org receiving a mean 
grade of 2.63 ± 0.7 (p < 0.01), whilst CACT​MC_no bone 
received a mean IQ value of 1.39 ± 0.8 (see also Fig.  2). 
Similar results were achieved by comparing the excel-
lent consensus results of reader 1,2 (ICC: 0.78; CACT​Org: 
3.13 ± 1.07, CACT​MC_no bone: 1.56 ± 1.01, p < 0.01). Of the 
27 datasets, 23 CACT​MC_no bone were preferred to CACT​
Org, while both readers 1 and 2 chose the identical four 
datasets to not have profited from the motion correction 
algorithm (example see Fig.  3). Reader 1, a radiologist 
with 9 years of experience, recorded a recommendation 
of repeating two CACTs, reader 2 at two years of expe-
rience recommended four to be repeated. There was a 
good interobserver agreement (ICC 0.73) concerning 
the presence of (breathing) motion artifacts, with sig-
nificantly more discernible motion in CACT​Org than 
after algorithm application (CACT​Org: 1.31 ± 1.67, CACT​
MC_no bone: 1.00 ± 1.34, p < 0.01). Reader 2 detected fewer 
signs of motion artifacts than reader 1 in both datasets 
(R1: CACT​Org: 1.48 ± 1.37, CACT​MC_no bone: 1.26 ± 1.18, 
p < 0.01; R2: CACT​Org: 1.15 ± 1.35, CACT​MC_no bone: 
0.74 ± 0.94, p < 0.01).

The other two radiologists (reader 3 and 4), represent-
ing the clinical setting, demonstrated clear preference for 
the CACT​MC_no bone, with only three (identical) post-pro-
cessed datasets being considered inferior to CACT​Org. 
A significant, good interobserver agreement (ICC 0.74, 
p < 0.01) concerning the five-point Likert-scale compari-
son of the datasets resulted, with CACT​MC_no bone receiv-
ing a mean score of 1.55 (p < 0.01). While the radiologist 
with ten years of experience (reader 3) recommended 
repetition of four CACTs, reader 4 (three years of expe-
rience) advocated eight repetition scans. An overview of 
the interrater results is also given in Table 3.

The mean distance of clearly identifiable subcapsular 
vessels to the liver capsule lay at 15.3 ± 14.9 mm in CACT​
Org (p < 0.01) compared to 11.5 ± 13.5 mm in CACT​MC_no 

bone. This result could be duplicated not only for the liver 
as a whole but also for each individual segment. A linear 
regression model of the intraarterial and parenchymal 
density values demonstrated a significant interrelation 
between a high artery-to-parenchyma contrast ratio and 
effectiveness of the motion algorithm (see Fig.  4). This 
is reflected by the higher probability of choosing a bet-
ter IQ with increasing contrast ratio and an odds ratio 
of 0.7 ± 1.1 (mean ± SD). For CACT​Org, no significant 
correlation was noted between the CR and the readers’ 
evaluation of IQ, which is also demonstrated by the com-
parable probabilities of choosing IQ and an odds ratio of 
1 ± 1 (mean ± SD). Measured in Hounsfield Units (HU), 
the mean ratio of datasets with high intraarterial con-
trast (2822 ± 1064.5 HU) and low parenchymal contrast 
(191.1 ± 95.86 HU), measured 17.9 ± 13.86. A low arte-
rial contrast (1067.91 ± 416.38 HU) and relatively high 
and diffuse parenchymal (340.39 ± 151.51 HU) or even 
extrahepatic enhancement led to a low contrast ratio of 
3.40 ± 1.18 probably influencing the algorithm negatively 
(Fig. 4).

Discussion
The results of our study demonstrate that the applica-
tion of a 3D motion compensating algorithm to CACT 
datasets in patients during TACE, with limited diag-
nostic image quality, could significantly improve overall 
IQ, vessel visualization both centrally and peripherally, 
and decrease the effect of motion artifacts. Use of such 
an algorithm might be able to save radiation exposure 
for patients and staff. This is especially important for 
younger radiologists who tended to recommend repeti-
tion of a CACT in up to 30% in our study.

The benefit of adjunct CACT versus stand-alone DSA 
is well documented for a variety of procedures, but espe-
cially for TACE [1–11], where improved soft-tissue reso-
lution and elimination of vessel superposition helps to 
identify all tumor feeders thus supporting a more selec-
tive TACE. As the value of CACT largely depends on 
good image quality [6, 7, 25], the 3D-motion compensat-
ing image algorithm has shown to improve both, objec-
tive and subjective image quality criteria, in liver and 
lung, respectively [22, 23]. Having proven beneficial in 
optimizing sparse objects such as vessels, this algorithm 
includes manual volume punching for bone removal 
[19–23]. With only 27 of 644 inadequate CACTs in our 
CACT cohort, most patients seem to be able to perform 
the basic scan prerequisites of a 10  s breath-hold while 
laying motionless with their arms elevated above their 
heads. Hence, the majority of CACTs performed at our 
institution have adequate or good image quality. How-
ever, an inevitable factor such as cardiac motion, which 
in itself has been described to deteriorate CACT IQ in 

http://www.r-project.org
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the left-sided liver segments especially, may be part of 
its source [25], a finding that could be duplicated by us. 
Especially in these cases of cardiorespiratory motion arti-
facts, simple enough post-processing may increase the 
tolerance for poor image quality and ultimately decrease 

the risks of a substantially compromised intervention 
or of having to repeat the imaging, especially as no new 
artifacts were documented by the use of the tool. For 
this reason, analysis of all CACT datasets from Janu-
ary 1st, 2015 – May 31st 2021before TACE interventions 

Fig. 2  Three coronary 15 mm MIPs of the right (A.1,2), common (B.1,2) and left hepatic artery (C.1, C2) before and after application of the motion 
compensating algorithm (CACT​Org vs. CACT​MC_no bone). A.2 demonstrates a significantly less blurry central (right) hepatic artery, an increased 
number of vascular tumor feeders as potential embolization targets and a clear discrimination of the small arteries originating from the main 
stem when compared to A.1. B.2 shows a significantly improved delineation of the common hepatic artery and its smaller branches, potentially 
benefitting their catherization. C.2 shows improved visualization of the central (left) and peripheral hepatic arteries after application of the motion 
compensating algorithm and bone segmentation, though to a lesser degree peripherally than in A,B 
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was performed, in order to identify those that would 
especially stand to profit from IQ improvement due to 
being or bordering on being non-diagnostic. In addi-
tion to assessing overall IQ, we adapted previously pub-
lished scoring criteria by Lee et  al. [25] for CACT IQ 
and artifact quantification, by measuring the distance 
of clearly visualized subcapsular vessels to the capsule. 
The increase of peripherally identifiable subcapsular ves-
sels could potentially improve software for emboliza-
tion guidance, especially for peripheral lesions. While 
the majority of original CACT datasets improved sig-
nificantly after application of the algorithm (see Fig.  3), 
few however did so on a lesser level or in one case, even 
decreased image perception (see Fig.  4). This did not 
correlate with the amount of motion artifacts perceived 
in the images nor with the type of catheter (micro- vs. 
standard diagnostic catheter) employed. By measuring 
both the intraarterial as well as the parenchymal hepatic 
contrast densities and calculating a hepatic artery-to-
parenchyma-ratio, this led to the discovery of its signifi-
cant correlation with algorithm effectuality. Measured 
in Hounsfield Units (HU) two centimeters distally to 
the catheter tip in the hepatic artery of CACT​Org, high 
intraarterial contrast with mean values of roughly 2800 
HU and low parenchymal contrast of 190 HU, measured 
in the epicenter of liver parenchyma enhancement, led 
to a high ratio of nearly 18. A low arterial contrast (1.000 
HU) and relatively high and diffuse parenchymal (340 
HU) or even extrahepatic enhancement, led to a low con-
trast ratio of 3. Enhancing tumor formations of different 
sizes did not interfere with the algorithm, however high 

extrahepatic (e.g., gastric, pancreatic) contrast enhance-
ment in the three original datasets graded as superior 
to the post-processed CACTs, served as an indicator of 
a lower intrahepatic contrast dose and hence, an insuf-
ficient advantage from the algorithm. Guided by the 
maximum values of the unsuccessfully improved datasets 
(mean contrast ratio: 5.78) and the minimum of the suc-
cessfully improved datasets (mean contrast ratio:7.32), a 
contrast ratio of at least 6–7 is needed for the algorithm 
to take effect and may thus be potentially used as an 
uncomplicated benchmark to roughly estimate its ben-
efit. This may be of special help to less experienced inter-
ventionalists, who consistently graded CACT​MC_no bone 
not only as significantly better than CACT​Org concerning 
overall image quality but also judged its effect on motion 
artifacts higher than the more experienced readers and 
would have repeated more than half of the CACTs. Even 
though less experienced readers seemed to benefit more 
greatly from the algorithm, this is also true for more 
seasoned radiologists, as all intraclass correlations dem-
onstrated good to excellent values. With the aforemen-
tioned post-processing steps taking up 5–7 min of time 
and being confined to a defined workspace, an automated 
bone segmentation would ultimately be required to 
organically integrate it into clinical routine and to reduce 
both manual interaction and reconstruction times.

Limitations
This was a retrospective study and as only severely flawed 
CACTs were to be included, there was a relatively low 
number of suitable studies to choose from. A larger study 

Fig. 3.  15 mm coronal MIP of a case with patchy enhancement of the liver parenchyma, and consecutively low ratio of hepatic 
artery-to-parenchyma contrast. There is no clear difference after application of the motion compensating algorithm, especially concerning vessel 
blurriness in the periphery
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population with a prospective, multi-centric study design 
and datasets from different angiographic systems would 
be beneficial in further analysing the motion correction 
algorithm’s effect. Thus, we are in the planning stages of 
a prospective study with patients receiving both an arte-
rial and parenchymal CACT for selective internal radia-
tion therapy (mprSIRT). Furthermore, up to now, no gold 
standard for the evaluation of CACTs exists, which is 
why we adapted previously published scoring features in 
combination with expert consensus criteria.

Conclusion
The application of the motion correction algorithm 
in CACTs during TACE with limited diagnostic value 
leads to a significant improvement in image quality. IQ 
increased especially in cases of a high artery-to-paren-
chyma ratio and has the potential to limit radiation expo-
sure due to repeated CACT.
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