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manually delineated on the T2-weighted MR images.
Then, the ROI was propagated to PET images and T1-
weighted MR images using rigid registration based on
MIM®. An example of 2D ROI in PET and MR images
of a patient with STS was provided in Fig. 2.

Imaging pre-processing
Before the texture feature extraction process, the PET
and MR DICOM images were transferred into the
MATLAB software (version R2019b; The MathWorks
Inc., Natick, MA). The PET images were first converted
to standard uptake value (SUV) maps, and followed by
the operation of the square-root transform to stabilize
the noise in the PET images. For the MR images, to
make the feature extraction process more reliable, we
rejected the voxels within the tumor volumes with inten-
sities outside the range of μ ± 3σ according to the sug-
gestion of Collewet et al. [16]. Since image feature values
were sensitive to variations of the voxel size, the widely
changing in voxel size might eliminate the robustness
and reproducibility of the feature extraction process.
Thus, we performed the image resampling before the
feature extraction process to keep isotropic voxel sizes
to be rotationally invariant. The image resampling also
allowed the comparison between analyses from different
samples or datasets. The image resampling was con-
ducted using the linear interpolation method with the
isotropic voxel size of 1.0 × 1.0 × 1.0 mm3. In addition,
the grey level was discretized to the fixed bin size of 64
to make features tractable according to the previous
studies [17–19].

Multi-level PET/MR fusion
For the purpose of characterizing the tumor volume
more comprehensively, we used the multi-level fusion
strategies to fuse PET and MR images in patients with
STS, including the image-level fusion, matrix-level fu-
sion, and feature-level fusion.

Image-level PET/MR fusion
We fused the PET images and MR images into a single
fused image to enhance the texture information. The
most commonly used image fusion algorithms of the 3D
discrete wavelet transform (DWT)-based image fusion
was adopted in this study [6, 20]. The DWT-based
image fusion method was suitable for multi-modality
images.
The DWT-based image fusion method firstly decom-

posed the PET images and MR images to the same de-
composition level using the wavelet basis function
symlet8 according to the previous studies [6, 20]. Then,
we combined the wavelet coefficients of PET and MR
sub-bands using the weighted average method [6, 20].
The weight of MR images (denoted as MR weight) was
set as 0.1, 0.2, 0.3, 0.4, …, 0.9. And the corresponding
PET weight was set as 1- (MR weight). Finally, we recon-
structed the PET/MR fusion images using the 3D inverse
DWT. The detailed descriptions and software code on
MATLAB could be achieved by https://github.com/
mvallieres/radiomics.

Matrix-level PET/MR fusion
For the texture feature extraction, the texture feature
matrix was generated based on the distributions of the
center voxel with surrounding voxels. The texture fea-
ture was calculated based on the generated calculation
matrix. For the matrix-level PET/MR fusion, two feature
texture matrices were constructed based on PET and
MR images, respectively. Then, we merged the two
matrices into a single fused matrix. The fused texture
matrix considered the voxel distributions within tumor
volumes in PET images and MR images simultaneously.
Further, the texture features were calculated based on
the fused texture matrices.

Feature-level PET/MR fusion
The most commonly and simply used feature fusion
method was feature concatenation [10, 21, 22]. This
method simply connected the image features of different

Fig. 2 An example of tumor delineation (red line) in PET and MR images of a patient with STS. A T1-weighted MR images; B T2-weighted MR
images; C PET images
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modalities. The number of connected features equaled
to the sum of the number of PET features and MR fea-
tures. In addition to the feature concatenation method,
we also used the feature average method to investigate
whether it is useful for classification. The number of
average features equaled to the number of PET and MR
features.

Quantitative feature extraction
A total of 136 quantitative image features were extracted
for the single modality images, image-level fusion
method, and matrix-level fusion method. The texture
features were divided into six families in this study, in-
cluding grey level co-occurrence matrix (GLCM)-based
features, grey level run length matrix (GLRLM)-based
features, grey level size zone matrix (GLSZM)-based fea-
tures, grey level distance zone matrix (GLDZM)-based
features, neighborhood grey tone difference matrix
(NGTDM)-based features, and neighboring grey level
dependence matrix (NGLDM)-based features [8, 23].
The feature extraction process was conducted according
to the Standardized Environment for Radiomics Analysis
(SERA) package on MATLAB software (version R2019b;
The MathWorks Inc., Natick, MA) [23]. The package
complied with the imaging biomarker standardization
initiative (IBSI) guidelines [24]. The feature names and
abbreviations used in the study were provided in Supple-
mentary Material 1.

Statistical analysis
Univariate analysis for image feature
We used the univariate analysis to assess the classifica-
tion performance of image features by using the Mann–
Whitney U test and receiver operating characteristic
(ROC) analysis. A P value < 0.05 was considered statisti-
cally significant. The area under the ROC curve (AUC)
value was calculated to evaluate the classification per-
formance. We also measured the correlation between
the T1-weighted MR image-based features, T2-weighted
MR image-based features, and multi-level fusion-based
features by using the Pearson correlation analysis. The
features with correlation coefficients greater than 0.8
were considered as significant correlations [25].

Multivariable analysis using independent validation
We used the multivariable analysis to assess the classifi-
cation performance of signatures. Prior to developing
image signatures, we used the Z-score method to
normalize the image features in the training dataset. The
features of the validation dataset were normalized using
the mean and standard deviation values calculated based
on the training dataset. The signature was developed
based on the training dataset using the features selected
by the maximum relevance minimum redundancy

(mRMR) approach, which was suitable to select the most
optimal image features from high-dimensional data. The
mRMR could rank the features according to the import-
ance of the classification label and redundancy to other
features. Thus, we could select the top features to estab-
lish the signature to avoid overfitting. Based on the rule
of thumb, the ratio of the sample size to the number of
predictor variables should be at least 10:1 [26]. In this
study, the potential feature number was limited to 4 to
establish the signature.

Multivariable analysis using cross validation
The patient dataset used in this study was relatively
small. This might produce unavoidable statistical bias
during the signature construction and validation pro-
cesses. In this current study, the 4-fold cross validation
method was also used. The overall patient cohort was
randomly separated into four partitions, with three parti-
tions used as the temporary training set and the
remaining one as the temporary validation set. The
radiomics signature was developed based on the tempor-
ary training set and validated based on the temporary
validation set. The method to build the radiomics signa-
ture was the same as the methods used in the previous de-
scriptions. The signature training and validation process
were conducted 4 times, and the mean performance with
standard deviation was reported as the 4-fold cross valid-
ation performance. All statistical analysis used in this
study was conducted using R software (version 3.51).

Results
Univariate analysis for image feature
By using the univariate analysis for image features based
on single modality images, the image features based on
PET images showed better classification performance
than the features based on the T1-weighted MR images
and T2-weighted MR images. For the features based on
PET images, a number of 79 features showed significant
classification capability for the tumor recurrence/ metas-
tasis prediction. The mean AUC value was 0.7254 ±
0.0366 for these PET features. By contrast, a number of
52 T1-weighted MR image-based features and 71 T2-
weighted MR image-based features showed significant
predictive performance in the tumor recurrence/ metas-
tasis prediction. The mean AUC value was 0.7196 ±
0.0340 and 0.6985 ± 0.0228 for these T1-weighted MR
image-based features and T2-weighted MR image-based
features, respectively.
For the image-level PET/MR fusion, we observed that

more features showed significant predictive capacity
than the PET-based and MR-based features. By using
the T1/PET image-level fusion with the MR weight of
0.2, a number of 87 features were selected with the mean
AUC of 0.7462 ± 0.0504. For the MR weight of 0.1 for
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images [27]. In our study, we directly measured the qual-
ity of fusion images by evaluating the predictive per-
formance of different fusion strategies. It was interesting
that the prediction performance of the image-level fu-
sion with different weights was quite different. This
phenomenon was consistent with a previous study [8].
This study still had several limitations. Firstly, the pa-

tient cohort for this study was relatively small, and only
one tumor type was included in the current study. Al-
though we conducted the independent validation and
cross validation methods, the statistical bias might still
be unavoidable. Our future research will be conducted
with a larger patient dataset with multi-tumor types to
further validate the robustness of this study. Secondly,
only three commonly used feature fusion methods were
included in this study. For the image-level fusion
method, we only used the wavelet bead image fusion
method. In the future study, we will include more fea-
ture fusion methods to find the optimal fusion method
in radiomics studies.

Conclusions
For the fusion of PET and MR images in patients with
STS, the image-level fusion method showed the optimal

classification performance than feature-level fusion and
matrix-level fusion methods, as well as the single modal-
ity images. Thus, the image-level fusion method was
more recommended to fuse PET and MR images in fu-
ture radiomics studies.
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Fig. 4 Multivariable analysis using independent validation with features based on different image fusion methods. A The AUC value of the
signatures based on T1-wighted MR images and PET images in the training dataset; B the AUC value of the signatures based on T1-wighted MR
images and PET images in the validation dataset; C the AUC value of the signatures based on T2-wighted MR images and PET images in the
training dataset; D the AUC value of the signatures based on T2-wighted MR images and PET images in the validation dataset
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