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Abstract

Background: We sought to evaluate the performance of a computed tomography (CT)-based radiomics
nomogram we devised in distinguishing benign from malignant bone tumours.

Methods: Two hundred and six patients with bone tumours were spilt into two groups: a training set (n = 155) and
a validation set (n = 51). A feature extraction process based on 3D Slicer software was used to extract the radiomics
features from unenhanced CT images, and least absolute shrinkage and selection operator logistic regression was
used to calculate the radiomic score to generate a radiomics signature. A clinical model comprised demographics
and CT features. A radiomics nomogram combined with the clinical model and the radiomics signature was
constructed. The performance of the three models was comprehensively evaluated from three aspects:
identification ability, accuracy, and clinical value, allowing for generation of an optimal prediction model.

Results: The radiomics nomogram comprised clinical and radiomics signature features. The nomogram model
displayed good performance in training and validation sets with areas under the curve of 0.917 and 0.823,
respectively. The areas under the curve, decision curve analysis, and net reclassification improvement showed that
the radiomics nomogram model could obtain better diagnostic performance than the clinical model and achieve
greater clinical net benefits than the clinical and radiomics signature models alone.

Conclusions: We constructed a combined nomogram comprising a clinical model and radiomics signature as a
noninvasive preoperative prediction method to distinguish between benign and malignant bone tumours and
assist treatment planning.
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Background
Distinguishing between benign and malignant bone tu-
mours is crucial for clinical decision and treatment [1,
2]. Routine imaging examinations include radiography,
computed tomography (CT), magnetic resonance im-
aging (MRI), bone scintigraphy, and positron-emission
tomography/computed tomography [3]. Radiography is

recommended as the first choice for the initial differen-
tial diagnosis of benign and malignant primary bone
tumours; in particular, evaluation of the lesion edge is
more accurate and effective than can be achieved using
CT or MRI [4]. However, CT is helpful in the diagnosis
of tumours that are easily affected by other anatomical
sites and plays an important role in the formulation of a
surgical plan. The reported accuracy of malignancy
assessment by CT, assuming that equivocal findings are
benign, is approximately 83% [5]. However, the
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radiographic appearance is often nonspecific and
nondiagnostic.
Radiomics is an emerging method of medical image

analysis. Its essence is to extract quantitative features
from medical images and to use them to describe the
characteristics of tissues and correlate the characteristics
with patients’ prognosis [6]. Previous research has re-
ported the feasibility of radiomics in discerning benign
from malignancy tissues in small peripheral pulmonary
nodules and breast lesions [7, 8]. However, research
using radiomics nomograms for bone tumours is rela-
tively limited. Textural analysis of CT imaging has been
applied for assessment of bone lesions, but the accuracy
was low (77.8–86%) [9–11]. These studies nonetheless
provided a new approach to bone tumour diagnosis
using quantitative imaging.
Our aim was to evaluate the performance of a radio-

mics nomogram derived from CT imaging in distin-
guishing between benign and malignant bone tumours.

Methods
Patients
Our institutional review board approved this retrospect-
ive study and the requirement for patient informed con-
sent was waived. In total, 206 patients who underwent
CT scans were pathologically diagnosed with bone tu-
mours in our hospital from January 2008 to December
2018. The inclusion criteria were: (1) bone tumour con-
firmed by surgery and with complete pathological data.
(2) the time interval between the CT examination and
surgery was ≤2 weeks. The exclusion criteria were: (1)
incomplete relevant clinical or pathological information;
(2) insufficient CT or pathology quality with which to
make a diagnosis. All cases were aggregated and divided

into benign (n = 88) and malignant (n = 118) groups ac-
cording to the pathology findings.
The diagnoses of the 206 lesions are presented in

Table 1; 118 were malignant and 88 benign (117 males
and 89 females; mean age 40.31 ± 21.28 y). Independent-
samples t-test analysis showed that age significantly
differed between the benign and malignant groups (P <
0.001). The 206 lesions were assigned to the training set
(n = 155) and the validation set (n = 51) by stratified ran-
dom sampling at a ratio of 3:1.

Image acquisition and segmentation of lesions
All CT scans were conducted on one of the following
devices: BrightSpeed RT 16 Elite, LightSpeed CT750 HD
(GE Healthcare, Milwaukee WI, USA) and SOMATOM
Sensation 64 (Siemens, Forchheim, Germany). Acquisi-
tion and reconstruction parameters: tube current 150–
200 mA, tube voltage of 100 or 120 kV; pitch 0.8; matrix
size 512 × 512. Section thickness was set at 5 mm.
The radiomics workflow is shown in Fig. 1. The

tumour was evaluated in three dimensions and the
segmentation of the tumour regions of interest (ROIs)
was based on ITK-SNAP (v.3.8.0 http://www.itksnap.
org) open-source software [12]. The ROI was manually
segmented layer by layer along the whole tumour region
(excluding peritumoral oedema), and only the largest of
the multiple lesions was sketched. This step was
processed by a radiologist with 7 years of experience; the
ROIs were verified a week later by another radiologist
with 14 years of experience. Any difference was re-
delineated after consultation. The intraobserver reprodu-
cibility was reflected according to the intra-class
correlation coefficients (ICCs) and we chose 40 random
ROI segmentations for calculating ICCs.

Table 1 Summary of 206 bone tumour confirmed by histologic results

Benign mass (N = 88) Number Malignant mass (N = 118) Number

Aneurysmal bone cyst 3 Undifferentiated pleomorphic sarcoma 1

Non-ossifying fibroma 5 Giant cell tumor 20

Ossifying fibroma 11 Osteosarcoma 20

Osteoblastoma 2 Chordoma 16

Simple bone cyst 1 Myeloma 5

Osteochondroma 36 Langerhans cell histiocytosis 2

Osteofibrous dysplasia 11 Lymphoma 1

Osteoid osteoma 2 Chondrosarcoma 20

Enchondroma 5 Fibrosarcoma of bone 4

Chondroblastoma 8 Ewing sarcoma 3

Brown tumor 1 Bone metastasis 26

Hemangioma 1

Intraosseous lipoma 1

Myofibroblastoma 1
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Image normalisation and feature extraction
At the beginning of extraction, pre-processing was ne-
cessary to improve discrimination between texture fea-
tures. In the first step, data normalisation and grey-level
discretisation were conducted to enhance the discrimin-
ation of different sets and improve the convergence rate
of the model. Then, an eight-level quantisation represen-
tation was used to resample the acquisition area to a
specific isotropic resolution (voxel size = 1 × 1 × 1mm3)
at a consistent angle to the plane resolution [13].
Feature extraction was processed on the SlicerRadio-

mics model in the 3D Slicer Radiomics Extension Pack
(v.4.10.2 https://www.slicer.org/). High-pass or low-pass
wavelet filters, LoG filters with different λ-parameters
(λ = 0.5, 1.0, 1.5) and wavelet-based processes were used
for pre-processing the original CT images. We set the
fixed bin width at 25 HU to discretise the voxel intensity
values. We then extracted the original CT image and the
radiomics characteristics of segmented lesions, including
the first-order characteristics based on CT value or pre-
processed image pixel values, the grey level co-occurrence
matrix, grey-level run-length matrix, grey-level size
zone matrix and neighbourhood grey-tone difference
matrix, which were described the morphological char-
acteristics of tumour form and the internal and sur-
face texture feature. There were 1130 CT features
drawn from lesions, and we used Ζ- scores to stand-
ardise into for a gaussian distribution. Additionally,
the ComBat method technique was used to eliminate
differences in image features caused by variations in
the parameters of different CT devices [14]. Finally,
we calculated ICCs of the extracted features, which

were based on CT images; any feature with an ICC >
0.75 was included in the subsequent analysis.

CT morphologic characteristics
CT data were reconstructed using bone algorithms
(window width 1500–2500 HU, window level 280–400
HU) and evaluated in axial orientation. Two radiologists
with 7 and 14 years of experience in skeletal muscle CT
diagnosis independently viewed and recorded all CT
images. If they had different opinions, they reached a
consensus through consultation. The CT features they
recorded were 1) location (the location of the main
tumour lesion within the medullary cavity or cortex), 2)
number (number of tumour lesions, solitary or multiple),
3) margins (well- or ill-defined), 4) expansion (ratio of
length to diameter, < 1 or > 1), 5) ground-glass appear-
ance, 6) rim sclerosis, 7) cortical integrity, 8) residual
bony ridge, 9) periosteal reaction, 10) cortical destruc-
tion, 11) soft tissue mass and 12) adjacent tissue involve-
ment. These CT features were selected for analysis
based on previous studies [15, 16].

Development of the radiomics signature, clinical model,
and radiomics nomogram
Subsequent analysis was executed on R software (3.3.1
version, http://www.R-project.org). Dimensional reduc-
tion of the dataset was conducted using the least
absolute shrinkage and selection operator (LASSO) re-
gression model. The radiomics signature was formed by
the linear combination of the features selected by
LASSO regression and the product of the corresponding
weighting coefficient [17], while the radiomics score

Fig. 1 Workflow of the radiomics analysis
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(rad-score) was also calculated. The receiver operating
characteristic curve was used to evaluate the perform-
ance of the model in distinguishing bone tumours. P <
0.05 was considered statistically significant. The area
under the receiver operator characteristic curve (AUC)
was used to predict the accuracy of the radiomics signa-
tures of both the training sets and validation sets. The
formula used to calculate rad-score was:

Rad − score ¼ − 0:1323�Original shape Sphericity

þ0:2145�Original shape Maximum 2D Diameter Slice

þ0:068�Log sigma − 1 − 5 −mmð Þ
glcm Maximum Probability

þ0:304�Log sigma − 1 − 5 −mmð Þ glcm Joint Energy

þ0:2414�Log sigma − 1 − 5 −mmð Þ glcm Idn

− 0:4306�Log sigma − 1 − 5 −mmð Þ
first order Robust Mean Absolute Deviation

þ0:2387�Log sigma − 1 − 5 −mmð Þ
firstorder 10Percentileþ 0:0317

�Wavelet LHH glszm Small Area Emphasis

− 0:1469�Wavelet HLH gldm Dependence Variance

− 0:0667�Wavelet LLL first order

Mean Absolute Deviationþ 0:3233:

ð1Þ

The clinical risk factors for assessing bone tumours
were analysed by univariate logistic regression. The fac-
tors for which P < 0.05 in multivariate logistic regression
were used in the clinical model. In logistic regression,
the Akaike information criterion was used as the stop in-
dication of the stepwise method. Next, the collinearity
was evaluated using the variance inflation factor; the
condition of variance inflation factor > 10 was used as an
exclusion criterion. The radiomics nomogram was built
on the basis of the aforementioned clinical parameters.

Performance and validation of the radiomics nomogram
A calibration curve was used to evaluate the calibration
of the nomogram; the Hosmer–Lemeshow test was used
to assess the goodness-of-fit of the nomogram. Data
from the validation set was used to verify the validation
of nomogram and calculate the rad-score. Then, the
AUC was measured using the calibration curve and the
Hosmer–Lemeshow test to assess the effectiveness of
the radiomics nomogram model. Finally, the Delong test
was used to compare AUCs between sets; P < 0.05 was
regarded as statistically significant.
Decision curve analysis (DCA) is an approach for

evaluating the availability and efficiency of radiomics
models, with the ability to graphically display the “net
benefit” of the radiomics model [18]. Based on regres-
sion prediction analysis, a loss function was introduced
into the DCA to calculate the threshold probability of
the validation set. Furthermore, the net reclassification

improvement (NRI) and total integrated discrimination
index (IDI) were used to compare prediction perform-
ance between groups [19]. The value of NRI can be posi-
tive or negative. A positive value indicates that the
model provides a net improvement in clinical decision-
making for patients with bone tumours.

Statistical analysis
Using R software to perform statistical analyses, the Kol-
mogorov–Smirnov test was first conducted to examine
whether these texture feature parameters followed a nor-
mal distribution. For continuous variables, we used an
independent-samples t-test and univariate analysis to
evaluate whether the feature average values were signifi-
cantly different between clinical or morphological char-
acteristics and malignancy. The Mann–Whitney U-test
was applied to examine those non-normally distributed
features, while the inter-group categorical variables were
compared using Fisher’s exact test or the chi-squared
test. P < 0.05 was regarded as statistically significant.
We used the “glmnet” package for the analysis of

LASSO logistic regression, which was applied to the
radiomics features. Each patient’s rad-score was a sum
of the product of the final retained features based on the
radiomics features with their corresponding coefficients.
Finally, the “rms” package was used to generate nomo-

gram and calibration curves. The AUC represents the
optimal cutoff threshold value that was computed;
models with larger AUCs had higher prediction efficacy.
The “generalhoslem” and “dca. R” packages were used to
calculate the Hosmer–Lemeshow test and DCA,
respectively.

Results
Clinical characteristics
Relevant demographics and CT features were obtained
using univariable analysis, as shown in Table 2. The re-
sults showed that there were statistically significant dif-
ferences between the two sets in age and nine CT
morphological features (P < 0.05).

Clinical modelling
The clinical features found to be significantly different in
the benign and malignant bone tumours by univariate
analysis are presented in Table 3. These features were
selected by multivariate logistic regression to establish
the clinical model. The results are listed in Table 4.
There were statistically significant differences in age,
ground-glass appearance, rim sclerosis, cortical integrity,
residual bony ridge and presence or absence of a soft tis-
sue mass between the two groups (P < 0.05 each). These
six features combined as the final clinical model with an
AUC of 0.858 (95% confidence interval [CI] 0.799–
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0.917) in the training sets and 0.815 (95% CI 0.696–
0.934) in the validation sets.

Radiomic feature selection and its performance
In the training set, 10 features were selected by compar-
ing the ICCs calculated through LASSO logistic regres-
sion. The process is shown in Fig. 2a and b. Figure 2c
shows the features that were filtered. The radiomics
scores were calculated to identify benign versus malig-
nant status of bone tumours. The radiomics features
showed good predictive accuracy: 0.832 with an AUC of
0.892 (95% CI, 0.842–0.942) in the training set and 0.804
with an AUC of 0.781 (95% CI, 0.643–0.918) in the val-
idation set.

Validation of the nomogram
A nomogram model was constructed that incorporated
the radiomics signature and clinical features derived
from previous LASSO logistic regression (Fig. 3a). The
performance of the nomogram is shown in Table 5. The
calibration curves are shown in Fig. 3b and c; these in-
clude the clinical model, radiomics signature, and nomo-
gram. The calibration curve showed good calibration in
the training set (Fig. 3b) with a nonsignificant Hosmer–
Lemeshow test result (P = 0.510), verified by the valid-
ation set (Fig. 3c) with P = 0.653.

Table 2 Demographic data and CT morphological features

Feature Benign Malignant P value

No. of patients 88 118

Gender 0.087

Male 56 61

Female 32 57

Age (mean ± SD) 47.77 ± 19.88 30.30 ± 18.93 < 0.001

< 50 years 69 53

≥ 50 years 19 65

Site 0.378

Head and neck 15 13

Upper extremity 14 20

Trunk wall 1 9

Spine 8 42

Lower extremity 50 34

Location 0.601

Within the medullary cavity 49 70

Within the cortex 39 48

Number 0.422

Solitary 75 105

Multiple 13 13

Expansion 0.012

< 1 75 83

> 1 13 35

Margin < 0.001

Well-defined 71 49

Ill-defined 17 69

Ground glass appearance 0.038

- 68 104

+ 20 14

Rim sclerosis < 0.001

- 43 98

+ 45 20

Cortical integrity < 0.001

- 63 33

+ 25 85

Residual bony ridge 0.001

- 65 61

+ 23 57

Periosteal reaction 0.036

- 79 93

+ 9 25

Cortical destruction

- 78 103 0.769

+ 10 15

Soft tissue mass < 0.001

Table 2 Demographic data and CT morphological features
(Continued)

Feature Benign Malignant P value

- 74 62

+ 14 56

Adjacent tissues involvement 0.041

- 74 85

+ 14 33

Table 3 Positive results of univariate analysis

Log OR SE OR P value

Gender 0.43 0.331 1.53 0.196

Age 0.04 0.009 1.04 < 0.001

Expansion 0.89 0.414 2.44 0.031

Margin 1.70 0.371 5.47 < 0.001

Ground Glass Appearance −1.01 0.438 0.36 0.021

Rim Sclerosis −1.66 0.375 0.19 < 0.001

Cortical Integrity 1.66 0.353 5.28 < 0.001

Opacity and Mineralization 1.21 0.357 3.34 0.001

Periosteal reaction 1.00 0.500 2.71 0.046

Soft tissue mass 1.66 0.404 5.23 < 0.001

Adjacent tissues involvement 0.67 0.406 1.95 0.099
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The results indicated that the radiomics nomogram
had better diagnostic performance than the clinical
model (AUC: 0.917 vs. 0.858, P = 0.008), but the radio-
mics nomogram diagnostic performance did not differ
significantly from that of the radiomics signature model
(AUC: 0.917 vs 0.892, P = 0.102). DCA and NRI results
indicated that the radiomics nomogram model had
higher net benefits for clinical decision making, with an

NRI of 0.238 (95% CI: 0.07–0.405) and an IDI of 0.163
(95% CI: 0.105–0.222) when comparing between the
radiomics nomogram and clinical model, whereas there
was an NRI of 0.196 (95% CI: 0.068–0.324) and an IDI
of 0.09 (95% CI: 0.046–0.133) when comparing between
the radiomics nomogram and radiomics signature
(Fig. 4a, b).

Discussion
It is extremely important and challenging for clinical
management and strategy to distinguish benign from
malignant bone tumours. We proposed a CT-based
nomogram that could distinguish between benign and
malignant bone tumours. The nomogram, combined
with the radiomics signature, age, ground ground-glass
appearance, rim sclerosis, cortical integrity, residual
bony ridge, and soft tissue mass, was successful in distin-
guishing between benign and malignant bone tumours.
Our analysis indicated that the radiomics nomogram

Table 4 Positive results of multivariate logistic regression
analysis

Log OR SE OR P value

Age 0.03 0.011 1.03 0.006

Ground Glass Appearance − 1.48 0.548 0.23 0.007

Rim Sclerosis −1.39 0.455 0.25 0.002

Cortical Integrity 1.01 0.429 2.75 0.018

Residual bony ridge 0.99 0.455 2.70 0.029

Soft tissue mass 1.29 0.503 3.63 0.010

Log OR Logarithm of Odds Ratio, SE Standard deviation, OR Odds ratio

Fig. 2 Texture features selected by the LASSO regression model. a Tuning parameter (λ) selection in the LASSO model. The top value represents
the corresponding characteristic number. In this study, the optimal λ value corresponding to the perpendicular line was selected to obtain 10
features with non-zero coefficients. b Variation of LASSO coefficients for different features as modulation parameter (λ value) changes. c
Contributions of the 10 selected features with nonzero coefficients to the radiomics signature, with their respective coefficient values
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achieved a relatively good performance compared with
the clinical model and the radiomics signature. More-
over, our model could serve as a noninvasive and pre-
operative method for accurate diagnosis; it could
therefore be used to plan therapy for patients with bone
tumours.
Morphological features in CT are often used to distin-

guish between benign and malignant bone tumours.
Strobel et al. predicted malignancy in bone based on a
combination of ill-defined margins, cortical destruction,
and periosteal reactions on CT with accuracy, sensitivity

and specificity of 78, 85, and 65%, respectively [16]. Our
study achieved greater specificity (74.5, 58.6, 95.5%) at
the cost of lower sensitivity. The combination of age,
ground ground-glass appearance, rim sclerosis, cortical
integrity, residual bony ridge, and presence of a soft tis-
sue mass was proved to be a significant predictor of ma-
lignancy in the clinical model in our study. A possible
explanation is that rim sclerosis (a predictor of benig-
nity) was probably present because benign bone tumours
have a slow growing process, which means that the bone
repair process is faster than the destruction process. The

Fig. 3 The radiomics nomogram incorporated seven factors of rad-score and clinical features (a). Calibration curves of the radiomics nomogram
in the training set (b) and validation set (c). The dotted line indicates the optimal prediction and the solid line represents the real predictive
ability of the model. When the solid line gets closer to the dotted line, the nomogram has better performance

Table 5 Results of radiomics nomogram, radiomics signature, and the clinical model predictive ability for distinguishing between
malignant and benign bone tumour

Variables Group AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Clinical model Train 0.858 (0.799–0.917) 0.813 0.876 0.727 0.780 0.814

Validation 0.815 (0.696–0.934) 0.745 0.586 0.955 0.944 0.636

Radiomics signature Train 0.892 (0.842–0.942) 0.832 0.854 0.803 0.854 0.803

Validation 0.781 (0.643–0.918) 0.804 0.793 0.818 0.852 0.750

Radiomics nomogram Train 0.917 (0.871–0.963) 0.871 0.854 0.894 0.916 0.819

Validation 0.823 (0.686–0.959) 0.863 0.931 0.773 0.844 0.895

AUC Area under the curve, CI Confidence interval, PPV Positive predictive value, NPV Negative predictive value
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presence of a soft-tissue mass was likely to indicate a
malignant growth pattern of tumour lesions destroying
or permeating through the Haversian canals to violate
the surrounding tissue, which was consistently proven in
previous studies [20–22]. However, the value of clinical
models largely relies on the experience and capabilities
of radiologists to precisely interpret CT imaging, which
explains why the diagnostic efficiency of the clinical
model was lower than that of the radiomics nomogram.
MRI features have also been used to distinguish between

malignant and benign bone tumours. The findings by Yu
et al. of masses suggestive of malignancy were only 75.8%
accurate [23]. Another study by Xu et al. reported an ac-
curacy of 89.8% using diffusion-weighted imaging se-
quences in distinguishing between benign and malignant
orbital masses [24]. Cao. et al. used dynamic contrast-
enhanced MRI to distinguish between malignant and be-
nign bone tumours with an accuracy of 90.6% [25]. Masaki
et al. used diffusion kurtosis imaging and reported a speci-
ficity and sensitivity of 96.3 and 93.8% [26], respectively.
These studies showed similar levels of prediction perform-
ance as our radiomics nomogram. However, compared
with CT scanning, MRI is expensive for equipment, has
longer image acquisition times, is easily affected by patient
motion, and is contraindicated for patients with metal in
their bodies. Thus, we developed a radiomics nomogram
based on plain CT images.
Radiomics is derived from imaging but is elevated

above imaging. It has rapidly become an approach to
transform images into multi-dimensional quantitative
data to support clinical decision making [27]. Import-
antly, radiomics is used in the assessment of tumour
characteristics and may replace tissue biopsy in some
cases to reflect a more precisive situation of the internal
characteristics of tumours [28]. To improve the accuracy

of distinguishing benign from malignant bone tumours,
we established a radiomics nomogram. This is a graph-
ical calculation tool that can establish a scoring standard
on the basis of the regression coefficients of extracted
features, thereby accurately predicting the risks of vari-
ous outcomes. A previous study reported that texture
parameters on CT had an accuracy of 77.8% for predict-
ing malignancy in bone lesions [11]. In our study, 10 fea-
tures were selected by LASSO logistic regression to
construct the radiomics signature model. In some stud-
ies, LASSO regression has been applied to avoid over-
fitting in model construction; accordingly, it is widely
used in dimensionality reduction involving high-
dimensional data [29]. Therefore, we used LASSO re-
gression to improve the accuracy of the final model.
Moreover, Lisson et al. reported that various texture fea-
tures, such as kurtosis, entropy, and skewness, could dis-
tinguish low-grade chondrosarcoma from enchondroma;
those findings indicated that texture features could be
used for the differentiation of bone tumours [30]. Simi-
larly, on the basis of the coefficient values of each fea-
ture obtained in this study, the first-order characteristics
(mean absolute deviation, 10th percentile), shape charac-
teristics and grey level co-occurrence matrix characteris-
tics provide greater contributions to our nomogram
model. Additionally, we combined our radiomics signa-
ture model with a clinical model that included some
characteristics that could better reflect the biological
characteristics of the tumour (e.g., ground ground-glass
appearance, rim sclerosis, cortical integrity, and residual
bony ridge). Thus, we established a more accurate
nomogram which demonstrated the good applicability
prospect of radiomics nomograms in bone tumours. Fur-
thermore, some scholars have recently implemented tex-
ture analysis combined with diffusion-weighted imaging

Fig. 4 The clinical impact curve and the DCA. a In the clinical impact curve, the red solid line indicates the number of patients at high risk with
relevant risk threshold, and the blue dotted line indicates that patients with bone tumours that are truly positive for malignancy. This curve
showed that the model had a better predictive ability for high-risk bone tumour patients with a range of threshold probability. b DCA for clinical
model (green line), radiomics signature (blue line), and nomogram (rad line). The grey line is made with the assumption that all tumours are
malignant. The black line is made with the assumption that no tumours are malignant. The curve indicates that the net benefit of the nomogram
is better than the other cases when the threshold is within the range 0.1–0.8
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and contrast-enhanced T1-weighted MRI in the differen-
tiation of bone tumours or soft tissue tumours; the re-
sults have been relatively good [31, 32]. This provides
insights for future research, whereby emerging imaging
technology can be combined with radiomics (e.g., dy-
namic contrast-enhanced MRI, intravoxel incoherent
motion, and diffusion kurtosis imaging to explore their
potential applications in assessment of the skeletal
muscle system.
We used ComBat to remove the different CT protocol

effects and applied DCA to verify the feasibility of the
clinical model, standardising the differences in image
features caused by variations in the parameters of differ-
ent CT devices using the ComBat method. As we know,
different scan settings of tube voltage, tube current,
thickness, pitch, and matrix may affect the feature values
[14]. This method is expected to solve the protocol effect
caused by multicentre data and to enhance the reliability
of the article. In practice, all imaging acquisition differ-
ences from different centres or protocols should be iden-
tified and transformed into a uniform standard using
ComBat. We used DCA to estimate whether the model
had good clinical value in our study. When the radio-
mics model got a higher “net benefit” in the DCA, a
more customised therapy strategy could be employed to
improve patients’ prognosis.
Our study had some limitations. First, potential selec-

tion bias was inevitable because of its retrospective na-
ture. Second, manual tumour segmentation inevitably
encounters irregularities. Therefore, all images were
standardised by normalisation to control the variables
[33]. Third, we conducted a retrospective study based on
single-centre CT imaging of different protocols, so we
used the ComBat method to eliminate the protocols’ ef-
fect to enable further studies with independent multi-
centre validation of radiomic models. Finally, our study
was a single-centre study with a limited sample of pa-
tients with bone tumours; therefore, a multicentre study
is necessary to verify the accuracy and efficacy of our
nomogram model.

Conclusions
In conclusion, we developed a radiomics nomogram in-
tegrating the clinical model and radiomic features that
contribute to the prediction of distinction between be-
nign and malignant bone tumours and supplements the
routine clinical strategy.
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