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Abstract

Background: The difficulty of assessment of neoadjuvant chemotherapeutic response preoperatively may hinder
personalized-medicine strategies that depend on the results from pathological examination.

Methods: A total of 191 patients with high-grade osteosarcoma (HOS) were enrolled retrospectively from
November 2013 to November 2017 and received neoadjuvant chemotherapy (NCT). A cutoff time of November
2016 was used to divide the training set and validation set. All patients underwent diagnostic CTs before and after
chemotherapy. By quantifying the tumor regions on the CT images before and after NCT, 540 delta-radiomic
features were calculated. The interclass correlation coefficients for segmentations of inter/intra-observers and
feature pair-wise correlation coefficients (Pearson) were used for robust feature selection. A delta-radiomics
signature was constructed using the lasso algorithm based on the training set. Radiomics signatures built from
single-phase CT were constructed for comparison purpose. A radiomics nomogram was then developed from the
multivariate logistic regression model by combining independent clinical factors and the delta-radiomics signature.
The prediction performance was assessed using area under the ROC curve (AUC), calibration curves and decision
curve analysis (DCA).

Results: The delta-radiomics signature showed higher AUC than single-CT based radiomics signatures in both
training and validation cohorts. The delta-radiomics signature, consisting of 8 selected features, showed significant
differences between the pathologic good response (pGR) (necrosis fraction ≥90%) group and the non-pGR
(necrosis fraction < 90%) group (P < 0.0001, in both training and validation sets). The delta-radiomics nomogram,
which consisted of the delta-radiomics signature and new pulmonary metastasis during chemotherapy showed
good calibration and great discrimination capacity with AUC 0.871 (95% CI, 0.804 to 0.923) in the training cohort,
and 0.843 (95% CI, 0.718 to 0.927) in the validation cohort. The DCA confirmed the clinical utility of the radiomics
model.

Conclusion: The delta-radiomics nomogram incorporating the radiomics signature and clinical factors in this study
could be used for individualized pathologic response evaluation after chemotherapy preoperatively and help tailor
appropriate chemotherapy and further treatment plans.
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Background
Osteosarcoma is the most common primary malignant
bone tumor in children and adolescents with an inci-
dence rate of 2–3 per million [1], and nearly 90% cases
are classified as high-grade osteosarcomas (HOS) [2].
The standard-of-care treatment is neoadjuvant chemo-
therapy (NCT), subsequent surgical resection and adju-
vant chemotherapy [3]. With the introduction of NCT,
the long-term survival rate of localized osteosarcoma pa-
tients has significantly improved and the 5-year survival
rate is now estimated at approximately 60–70% [4].
However, there are still some patients whose prognoses
are not ideal, especially in patients with poor histologic
responses after NCT [4, 5].
Accurate identification of histologic responses to

chemotherapy in patients with HOS is crucial for prog-
noses and treatment strategy decisions [6]. The chemo-
therapy strategy is adjusted according to the poor initial
response to osteosarcoma during the course of treat-
ment. Some patients with poor pathologic responses,
however, are not even suitable to undergo limb salvage
surgery. But the exact chemotherapeutic response as-
sessment needs to be based on pathological findings
after surgical resection [7]. Accordingly, evaluation of
pathologic responses using non-invasive approaches
could be important.
Previously, a patient’s pathologic response was usu-

ally estimated by the change of the tumor volume,
edema, metabolic indices, etc. through a radiological
examination preoperatively [8–16]. There are several
prediction models developed to distinguish good re-
sponders from others for patients with HOS. 18F-FDG
PET/CT has a good performance in predicting the
pathologic response, whereas its cost is high [12–16].
MRI has a certain predictive effect, but the accuracy
of the judgment is not high enough [8–11]. Accord-
ing to Holscher et al., increase of tumor volume indi-
cates poor histopathologic response (sensitivity 89%,
specificity 73%) [17]. Decreased or unchanged tumor
volume and a decrease in edema were poor predictors
of good histopathologic response (predictive values,
56–62%) [8]. While, an increase in the size of areas
of low signal intensity, and a decrease in joint effu-
sion occurred independently of histopathologic re-
sponse in almost half of the patients [8]. Most
previous studies have focused on qualitative descrip-
tion of medical images, which may have limitations in
predicting chemotherapeutic responses. Moreover,
most of them used a mean value to depict whole tu-
mors, potentially overlooking tumor heterogeneity.
Radiomics, which involves extracting quantitative

features from medical images, is capable of generating
imaging biomarkers as decision support tools for clin-
ical practice [18–26]. The traditional radiomics

method utilizes single-phase medical images for evalu-
ation or prediction, which neglects the tumor change
during treatment or following up. The delta-radiomics
concept [18], which employs the change in radiomic
features during or after treatment to instruct clinical
decisions, may be more suitable for evaluation of
tumor response of treatment. The delta-radiomics
method has been shown to be predictive in prognoses
and metastases in previous studies. Carvalho et al.
found the delta-radiomic features of PET images pre-
dictive of the overall survival in non-small cell lung
cancer patients [27]. Fave et al. suggested the delta-
radiomic features from CT images after radiation
therapy may be indicators of tumor response in non-
small cell lung cancer patients [28]. As pretreatment
CT is associated with responses to NCT while post-
treatment CT directly reflects the posttreatment sta-
tus, a radiomics model combining pre- and
posttreatment CT data may potentially predict patho-
logic response with accuracy. To the best of our
knowledge, no previous studies have explored the
capability of delta-radiomic features of CT in tumor
response evaluation for HOS patients. Delta-radiomics
may offer better clinical decision support and have
enormous potential for precision medicine.
Thus, in our retrospective study, we aim to develop

and validate a delta-radiomics nomogram in evaluating
pathologic responses after NCT in patients with HOS.
Consistent with clinical practice, our work combined
pre- and posttreatment CT data to noninvasively evalu-
ate the outcomes of patients and identify the non-good
response HOS patients.

Methods
Patients
This retrospective study reviewed the medical images
and clinical records of all patients with osteosarcoma
registered at our hospital between November 2013
and November 2017. This study was approved by the
Institutional Research Ethics Board and the informed
consent requirement was waived. This study was con-
ducted according to the Declaration of Helsinki. All
patients included in the study met the following cri-
teria: they had undergone NCT and subsequent surgi-
cal resections; they had diagnostic CTs before and
after chemotherapy, and we had access to their
complete histologic information. All patients were di-
agnosed with HOS according to World Health
Organization (WHO) Classification of Tumors of Soft
Tissue and Bone, they have many subtypes such as
osteoblastic, chondroblastic, fibroblastic, telangiectatic,
small cell and high-grade surface (juxtacortical high
grade) [29]. All patients had diagnostic CTs of tumor
site before and after chemotherapy, with an interval
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of 9 to 11 weeks. Lung CT was performed before,
during, and after chemotherapy to determine the
presence of pulmonary metastasis, with intervals
ranging from 4 to 11 weeks. Each patient received
emission computed tomography (ECT) pre-
chemotherapy to evaluate the primary lesion and po-
tential metastatic foci. Of the 261 patients diagnosed
with HOS at our institution, 191 fulfilled these cri-
teria. Additional file 1: Figure S1 shows the patient
recruitment pathway. The clinical factors of age, gen-
der, tumor location, tumor stage, pathologic subtype,
type of surgery, new pulmonary metastasis and
chemotherapy regimens were acquired for the study
by reviewing patients’ medical records. The patients’
data were divided into training (n = 137) and valid-
ation (n = 54) datasets according to patients’ admis-
sion times. The data of patients admitted after
November 2016 were used for validating the devel-
oped model.

Chemotherapy and histologic analysis
All patients received neoadjuvant chemotherapy followed
by surgical resection. The treatment protocol and sched-
ule followed the National Comprehensive Cancer
Network guidelines. The conventional three-drug regi-
men, (Regimen-1) consisting of methotrexate, cisplatin
and doxorubicin, was followed by a subsequent surgical
resection. The patients who suffered severe liver dysfunc-
tion or other adverse reactions after the administration of

methotrexate during the first cycle of NCT received
Regimen-2 treatment consisting of methotrexate, ifosfa-
mide, cisplatin and doxorubicin preoperatively. Regimen-
3, consisting of methotrexate, ifosfamide, cisplatin and
doxorubicin, was used in cases of tumor progression or
new lung metastasis during the first chemotherapy cycle.
The total duration of NCT was at least 8–10 weeks. The
complete schedules for these regimens are shown in Add-
itional file 1: Figure S2.
We analyzed the histologic response to preoperative

chemotherapy using the method of Bacci et al. by
two experienced pathologists [7]. Tumor necrosis per-
centages graded as III and IV (tumor necrosis≥90%)
indicated a pathological good response (pGR), while
those graded as I and II (necrosis < 90%) indicated a
non-pGR [6].

Technical parameters for CT image acquisition
Fig. 1 depicts the schematic of our study. The pre-
treatment and posttreatment CT scans were acquired
on one of the 40-slice, 64-slice and 128-slice spiral
CT scanners (Siemens Medical Systems, Philips Med-
ical Systems, Toshiba Medical Systems) in our institu-
tion. The CT scans were with one of the four tube
voltages (80kVp, 100kVp, 120kVp, 140kVp) and tube
current of 200–500 effective mAs, for different pa-
tients. The CT images were reconstructed into a
matrix of 512 × 512. The reconstruction FOV varied
from 132.5 to 475 mm, corresponding to pixel sizes

Fig. 1 The radiomics schematic depiction of this study
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ranging from 0.2588 to 0.9277 mm and slice thickness
of 4 or 5 mm, according to the tumor volume circum-
stances (pelvis, femur, tibia, humerus and extremity).

Tumor segmentation
We used the pretreatment and posttreatment CT
scans to quantify tumor heterogeneity in this study.
The detailed imaging parameters are listed above. The
3-dimensional tumor regions were contoured from
both the pretreatment and posttreatment CT scans as
the region of interest (ROI) for this study. Two expe-
rienced orthopedists performed the tumor segmenta-
tion using the open-source software ITK-SNAP as
reported [22]. The contours were then checked by a
radiologist to ensure their accuracy and were modi-
fied if necessary. Both orthopedists and radiologists
agreed upon all the ROIs for this study. The tumors
in the training cohort were segmented by
Orthopedist-1 twice and Orthopedist-2 once, separ-
ately. The two sets of radiomic features based on the
segmentation of Orthopedist-1 were used for intra-
observer reproducibility test and model training. The
radiomic features based on the segmentations of
Orthopedist-1 and Orthopedist-2 were used for inter-
observer reproducibility test. Tumors in the validation
cohort were segmented by Orthopedist-1 to test the
prediction power of the trained model. For cases
where the boundary of soft tissue mass is unclear on
the CT, the patient’s MRI image was referenced dur-
ing the segmentation.

Feature extraction
Feature extraction was performed using open-source
Radiomics packages by Vallières M. et al., [30, 31] which
were implanted onto Matlab software (Matlab 2016,
MathWorks). All CT scan images were resampled to 1
mm resolution on all three directions to standardize the
voxel size across the patients [32]. The radiomic features
that characterize the intensity and texture of the tumors
were extracted for each region. The wavelet transform-
ation was performed on the tumor region at eight direc-
tions to fully quantify the tumor in multiple dimensions.
The intensity features measured the gray level distribu-

tion in the tumor region and were quantified as mean,
energy, entropy, variance, skewness, kurtosis and uni-
formity. The texture features characterized the tumor’s
texture properties based on the gray-level co-occurrence
matrix (GLCM, n = 22), the gray-level size-zone matrix
(GLSZM, n = 13), the gray-level run-length matrix
(GLRLM, n = 13) and the neighborhood gray-tone-
difference matrix (NGTDM, n = 5). In summary, 7 inten-
sity features and 53 texture features were extracted from
each ROI.

The wavelet-based features were derived by perform-
ing texture analysis on the wavelet transformed tumor
region on the x, y and z-axes, similar to Fourier analysis.
The wavelet transformation decomposed the tumor re-
gion images into high-frequency components (H) or
low-frequency components (L) at the three directions.
Eight categories of wavelet features were acquired and
labeled as HHH, HHL, HLH, LHH, LLL, LLH, LHL,
HLL based on their different decomposition order. For
example, the HLH category features are the texture fea-
tures derived from the tumor region after a high pass fil-
ter on the x-direction, a low pass filter decomposition
on the y-direction and a high-frequency wavelet decom-
position on the z-direction. For each category, the inten-
sity and texture features were calculated, resulting in
480 wavelet-based radiomic features for each ROI.
The radiomic features were extracted from the tumor

regions on pre-chemotherapy CTs (pre-chemotherapy
radiomic features, PRE-RFs) and post-chemotherapy
CTs (post-chemotherapy radiomic features, PST-RFs),
respectively. The delta-CT features (Delta-RFs) were de-
fined as the change of radiomic feature after chemother-
apy and calculated by subtracting PRE_RFs from PST_
RFs, as shown in Eq. 1.

Delta−RF ¼ PST−RF� PRE−RF ð1Þ

Feature selection and Radiomics signature building
The training datasets were used for feature selection
and radiomics signature building. The radiomic fea-
tures which were robust in both the inter-observer
and intra-observer reproducibility tests were used for
further analysis. The interclass correlation coefficient
(ICC) was used to evaluate the reproducibility of
radiomic features across different segmentations and
robust radiomic features were defined as those with
ICCs of more than 0.75 [33]. To exclude highly re-
dundant radiomic features, a correlation matrix was
constructed using pair-wise Pearson correlation ana-
lysis [34]. The features that showed high correlation
(correlation coefficient > 0.95) with other features were
then excluded from the analysis.
We used the Mann-Whitney U test to assess the

ability of the delta-radiomic features in differentiating
pGR patients from non-pGR patients. The radiomic
features with statistical significance between the pGR
group and the non-pGR group were left for further
analysis.
The least absolute shrinkage and selection operator

(LASSO) regression was used to perform the radiomic
features selection in the training dataset. The LASSO
method was usually implanted in the feature selection of
high-dimensional data by minimizing classification
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errors, tuning the sum of absolute values of the fea-
ture coefficients to be no more than a parameter λ
[35]. The coefficients of some features are reduced to
zero by tuning the λ. Only features with non-zero co-
efficients were selected in the final model. A radio-
mics signature was then built by summing the
features multiplied by their coefficient. Ten-fold
cross-validation was used in determining the tuning
parameter λ. The λ value that resulted in the least bi-
nomial deviance in the ten-fold cross validation was
selected in this study. The receiver operating charac-
teristic (ROC) curve and the area under the ROC
curve (AUC) were used to assess the predictive accur-
acy of the developed delta-radiomics signature
(Radiomics Signature I).
To show the unique predictive value of Delta-RFs, we

also compare the prediction performance of delta-
radiomics signature with the radiomics signatures con-
structed using only PRE-RFs (Radiomics Signature II),
PST-RFs (Radiomics Signature III) respectively and
combining PRE-RFs and PST-RFs (Radiomics Signa-
ture IV). The radiomics signature II, III, IV were con-
structed using the same analysis workflow with Delta-
RFs.

Delta Radiomics Nomogram construction
The multivariable logistic regression method was used
for examining the prediction value of combining radio-
mics and clinical features. The backward elimination
method was used in selecting the optimum feature sub-
set [36]. The delta-radiomics nomogram was con-
structed based on the final model. The developed delta-
radiomics signature and nomogram were then validated
on the validation dataset.

Statistical analysis
Chi-square and Mann-Whitney U tests were used for
categorical and continuous clinical factors between
the two groups, respectively. The p values of multiple
comparison Mann-Whitney U test were corrected
using the false discovery rate method. The optimal
cutoff was calculated by Youden index in the ROC
curve analysis. The calibration curve was used to as-
sess the predictive accuracy of the developed nomo-
gram. Decision curve analysis (DCA) was conducted
to evaluate whether the nomogram was sufficiently
robust for clinical practice [37]. A value of p < 0.05
was considered statistically significant. All p values
were two-sided in this study. All statistical analysis
was performed with R software (version 3.4.1; http://
www.Rproject.org). The LASSO logistic regression
analysis was performed using the “glmnet” package.
The nomogram was plotted based on the “rms”

package. The ROC curve was plotted using MedCalc
15.2.2 (MedCalc Inc., Mariakerke, Belgium).

Results
Patient characteristics
Patient characteristics in the training and validation sets
are detailed in Table 1 and Additional file 1: Table S1.
There were no significant differences between the two
sets in chemotherapeutic response (pGR and non-pGR),
age, gender, tumor volume, tumor location, tumor stage,
pathologic subtype, type of surgery, new pulmonary me-
tastasis and chemotherapy regimens. The Non-pGR
rates were 58.4 and 53.7% in the training and validation
cohorts, respectively, and there were no significant dif-
ferences between them (p = 0.6691).

Features selection and Radiomics signature building
In total, 540 radiomic features were extracted from
tumor lesions on the pre-treatment and post-
treatment CT scans, respectively, resulting in 540
Delta-RFs. A total of 382 Delta-RFs were robust in
both the intra-observer analysis and inter-observer
analysis. Then, 198 Delta-RFs with a correlation coef-
ficient < 0.95 were selected for further analysis. By ap-
plying the Mann-Whitney test on the pre-selected
features, 45 instructive Delta-RFs showed significant
differences between the pGR group and the non-pGR
group with a p-value < 0.05 and are shown in
Additional file 1: Figure S3. Through the LASSO lo-
gistic regression analysis, eight Delta-RFs were se-
lected (shown in Fig. 2). All the selected Delta-RFs
were reproducible in the intra−/inter-observer test
with ICC of more than 0.8. The detailed ICC values
of selected Delta-RFs were shown in Additional file 1:
Table S2. Based on the eight Delta-RFs and their co-
efficients, a delta-radiomics signature was calculated
for each patient. The delta-radiomics signature for-
mula is given below.

Delta Radiomics Signature
¼ 0:040868419� Δvariance−0:112921064

� ΔLLL GLCM corrp−0:131641870
� ΔLLH Entropy−0:215106590
� ΔLLH GLSZM GLN−0:162624738
� ΔLHH GLSZM ZSN−0:049041868
� ΔHHL GLCM corrm þ 0:042748856
� ΔHHH GLSZM SZEþ 0:001226972
� ΔHHH GLSZM SZHGE ð2Þ

Performance of the Radiomics signature
The delta-radiomics signature was significantly differ-
ent between pGR and non-pGR patients in both the
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training and the validation datasets (both p < 0.0001).
The ROC analysis exhibited good prediction value of
the developed delta-radiomics signature in this study
with an AUC of 0.868 in the training dataset and
AUC of 0.823 in the validation dataset (Fig. 3 a, b).
The delta-radiomics signature values of patients are
shown in Fig. 3 c, d. Compared with radiomics signa-
ture II, III, IV, the delta-radiomics signature shows

the highest AUC in both the training and validation
datasets, which is illustrated in Additional file 1: Fig-
ure S4.

Radiomics Nomogram building and evaluation
To build the final model in the backward search process,
we combined the delta-radiomics signature and new pul-
monary metastases (NPM) during chemotherapy. We

Table 1 Characteristics at time of diagnosis in patients with high-grade osteosarcoma

Characteristic Training cohort (n = 137) P Independent validation cohort (n = 54) P

pGR (n = 57) Non-pGR (n = 80) pGR (n = 25) Non-pGR (n = 29)

Age, years

Median (range) 16 (4.6–43) 14 (4–46) 0.3939 15 (8–39) 18 (7–44) 0.6123

≤ 15 y 27 45 13 12

> 15 y 30 35 12 17

Gender 1 0.5852

Male 34 47 14 13

Female 23 33 11 16

Location of primary tumor 0.3447 0.8041

Humerus 11 8 3 3

Femur 27 45 14 17

Tibia and fibula 17 20 8 8

Radius and ulna 1 2 0 0

Others 1 5 0 1

Stage at diagnosis 1 0.3062

Localized 47 66 20 27

Metastatic 10 14 5 2

Pathologic subtype 0.3055 0.332

Osteoblastic 46 55 20 19

Chondroblastic 3 13 1 5

Fibroblastic 4 4 4 4

Telangiectatic 3 5 0 1

Others 1 3 0 0

Type of surgery 0.02487* 1

Limb salvage 55 66 24 27

Amputation 2 14 1 2

New pulmonary metastasis 1 0.9402

Yes 2 4 1 0

No 55 76 24 29

Chemotherapy regimens 0.7224 0.4406

1MTX, DDP and ADM 42 58 17 22

2MTX, IFO,DDP and ADM 12 15 8 6

3MTX,IFO, DDP and ADM 3 7 0 1

Radiomics score 4.4E-4(−1.1–0.72) −0.55(−2.9–0.32) 2.1E-14 0.030(−0.58–0.71) −0.31(−2.1–0.34) 2.4E-5

Note: Individual clinical factors were analyzed for significant differences using a nonparametric test. *P < 0.05 indicates a significant difference. Ages and radiomics
scores are represented as [Median (range)]. Methotrexate (MTX), Ifosfamide (IFO), Cisplatin (DDP) and Doxorubicin (ADM)
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built a radiomics nomogram which was based on the
multivariable logistical regression model using the delta-
radiomics signature and NPM as shown in Fig. 4 a.
The ROC analysis result demonstrated the improved
prediction value of the developed radiomics nomo-
gram. After incorporating NPM in the prediction
model, the AUC in the training and validation data-
sets increased to 0.871 and 0.843, respectively (Fig. 4
b, c). The calibration curve analysis also indicated the
high predictive accuracy of the developed radiomics
nomogram with a mean absolute error of 0.015 and
0.017 in the training and validation datasets, respect-
ively (Fig. 5 a, b). DCAs for the radiomics nomogram
in the training and validation datasets are shown in
Fig. 5 c and d. The decision curve showed relatively
good performance for the model according to clinical
application. When the threshold probability of pGR is
between 0 and 0.84 in the training set or between 0
and 0.81 in the validation set, using the radiomics
nomogram to predict pGR adds more benefit than
treating either all or no patients.

Discussion
In this present study, we developed and validated a diag-
nostic, delta-radiomics signature-based nomogram for
the noninvasive, preoperative individualized evaluation
of chemotherapeutic response in patients with HOS.
The radiomics signature successfully differentiated pa-
tients according to their chemotherapeutic response.
The easy-to-use nomogram facilitates the noninvasive

individualized evaluation of a patient’s chemotherapeutic
response and therefore provides an effective tool for
clinical decision-making.
The accurate identification of non-pGR patients

using visual judgment (conventional CT, MRI) re-
mains challenging in clinical practice. Methods using
18F-FDG PET/CT or 18F-FDG PET/CT combining
MRI may have a good performance. Maximum stan-
dardized uptake value (SUVmax), metabolic tumor
volume (MTV) and total lesion glycolysis (TLG) that
derived from 18F-FDG PET/CT or 18F-FDG PET/CT
combining MRI were associated with histologic re-
sponse and may have a good performance in differen-
tiating histologic response [13, 14, 16]. However, they
are relatively expensive and not easy to popularize.
Radiomics analysis integrates high-dimensional im-
aging features, which are difficult to detect visually
when evaluating the non-pGR. Our proposed delta-
radiomics nomogram based on these imaging features
showed a better performance than previously reported
methods. It can therefore be helpful in clinical
decision-making as it provides oncologists with a po-
tential quantitative tool for individualized non-pGR
prediction.
To use our proposed radiomics model, radiologists

must first delineate the regions of interest (ROI) on
pre- and post-chemotherapeutic CT scans, after which
the model allows for the calculation of the probability
of non-pGR for each individual patient. Oncologists
can then consider various factors, including the calcu-
lated probability of non-pGR and other retrievable

Fig. 2 Ten-fold cross-validation results using the LASSO method. (a) The binomial deviance metrics (the y-axis) were plotted against log(λ)
(the bottom x-axis). The top x-axis indicates the number of predictors with the given log(λ). Red dots indicate the average AUC for each
model at the given λ, and vertical bars through the red dots show the upper and lower values of the binomial deviance in the cross-
validation process. The vertical black lines define the optimal λ, where the model provides its best fit to the data. As a result, the optimal
λ of 0.1047237, with log(λ) = − 2.256430, was selected. (b) The LASSO coefficient profiles of the 45 radiomic features are depicted. The
vertical line was plotted at the given λ. For the optimal λ, eight features with non-zero coefficients were selected
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clinical information, as well as their own clinical ex-
perience, to make a comprehensive judgment on
whether to modify the treatment strategy.
Previously, there have been a few studies evaluating

the prognostic value of 18F-FDG PET/CT and MRI in
assessing the chemotherapy outcome for HOS [8–13,
15, 16]. Imaging radiomics has been studied in pre-
dicting the pathologic response after preoperative che-
moradiotherapy for locally advanced rectal cancer
[38]. Radiomics signature-based nomograms are cur-
rently being used in the prediction of pathological

responses to chemoradiotherapy or chemotherapy in
certain cancers [39, 40]. Although radiomics
signature-based nomograms or imaging radiomics has
formerly been used in survival prediction and the dif-
ferentiation of pulmonary metastases from non-
metastatic nodules in osteosarcoma [22, 41]. To the
best of our knowledge, this is the first study evaluat-
ing the pathological response after chemotherapy for
HOS using a radiomics nomogram.
We evaluated the ability of texture features in differen-

tiating non-pGR patients with HOS. The texture analysis

Fig. 3 The predictive performance of the radiomics signature for each patient in training (a) and validation (b) sets (95% CI, 95% confidence
interval; AUC, area under curve). The radiomics signature for each patient in training (c) and validation (d) sets. Blue dots show signature values
for non-pGR patients, while red triangles indicate values for pGR patients. The dotted line shows the best cutoff values calculated by Youden test,
which is − 0.251 for the training dataset
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was previously used for tissue classification in medical
images [42], showing the capability of texture analysis in
quantifying tumor heterogeneity. For the construction of
the delta-radiomics signature, 540 candidate delta-
radiomic features were reduced to an 8-feature com-
bined signature by the LASSO method. The feature se-
lection process reduced the over-fitting error and the
impact of the noise and random error [42], making the
developed radiomics model more robust and stable.
The radiomics model we proposed achieved a rela-

tively high negative predictive value and positive pre-
dictive value in both the training and validation
cohorts. The high negative predictive value in this
study indicated that the non-pGR evaluation of the
proposed model was reliable. Thus, oncologists may
potentially adjust the chemotherapy regimen or inten-
sify the chemotherapy. In some cases, surgeons may
even choose aggressive surgery. Conversely, the high
positive predictive value suggests that our model can
accurately enable oncologists to screen out pGR
patients.
Recently, many studies have used MRI to predict a

pathological response, and the tumors they evaluated
were mainly soft tissues. Diffusion-weighted imaging is
considered to have strong potential in predicting the

responses to chemoradiotherapy in patients with locally
advanced rectal cancer [37, 43]. To be different, as HOS,
evaluated in this study, mainly occurs in the skeleton,
CT scans have greater advantages in evaluating bone de-
struction and osteoid production comparing to MRI. In
addition, CT is a conventional, highly popular examin-
ation at low cost. However, it is insufficient to evaluate
edema and metabolic levels when compared with MRI
and PET. Therefore, if CT scanning were combined with
MRI and PET, the prediction accuracy would likely be
higher. A further study combining CT, MRI and PET
images together would most probably achieve better pre-
diction accuracy.
Changes in tumor volume have previously been sug-

gested as a prediction factor to the pathologic re-
sponse by several authors, who reported that the
sequestration and disappearance of a tumor may be
correlated with a good pathologic response. Con-
versely, the increase or no change in tumor volume
suggests a poor response to chemotherapy. However,
the situation might be quite different in osteosarcoma,
a tumor that does not shrink to a great extent after
neoadjuvant chemotherapy [12]. Nevertheless, in some
cases, the tumor may undergo necrosis or liquefaction
and become avascular or cystic, without a significant

Fig. 4 (a) The radiomics nomogram incorporating the radiomics signature and NPM. The ROC curves for the radiomics nomogram in training (b)
and validation (c) sets
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change in tumor size. Some may even have increased
in size. The accuracy of the judgment based on
changes in tumor volume in these cases is not high
enough. The voxel-wise analysis could provide add-
itional information, comparing conventional volume-
averaged analysis in assessing the therapeutic re-
sponse. Therefore, it is an important tool to interro-
gate tumor pathological response.
In the present study, we use the delta-radiomics

method. A clinician could request the radiomic analysis
of a patient based on their diagnostic CT images, poten-
tially enabling an improved early chemotherapeutic

response evaluation, improved clinical decision-making
and, consequently, a better prognosis [18].
The present study has some limitations. First, we

retrospectively analyzed only the patients who met
the inclusion criteria, which may have been prone to
selection bias. Second, the sample size of the cohort
was relatively small. Third, all the patients were from
a single institution. The performance of the model
may differ when used with multi-centric datasets with
different parameters. Further, better-controlled pro-
spective studies in multi-centric settings with a larger
sample of patients would be required to validate the

Fig. 5 The calibration curve of the developed radiomics nomogram in the training dataset (a) and validation dataset (b). Calibration
curves depict the calibration of each model according to the agreement between the predicted probability of pathologic good response
(pGR) and actual outcomes of the pGR rate. The y-axis represents the actual rate of pGR. The x-axis represents the predicted probability
of pGR. The diagonal black line represents an ideal prediction. The red line represents the performance of the radiomics nomogram, of
which a closer fit to the diagonal black line represents a better prediction. Decision curve analysis (DCA) for the radiomics nomogram in
both training (c) and validation cohorts (d). The y-axis indicates the net benefit; x-axis indicates threshold probability. The red line
represents the radiomics nomogram. The gray line represents the hypothesis that all patients showed pGR. The black line represents the
hypothesis that no patients showed pGR
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reliability and reproducibility of our proposed radio-
mics model.

Conclusions
In conclusion, using pre- and posttreatment CT data, we
developed a delta-radiomics nomogram with excellent
performance for an individualized, noninvasive pathologic
response evaluation after NCT. This model may help
tailor appropriate treatment decisions for HOS patients.
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