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Abstract

Background: The Liver Imaging Reporting and Data System (LI-RADS) and European Association for the Study of
the Liver (EASL) criteria are widely used for diagnosing hepatocellular carcinoma (HCC). Radiomics allows further
quantitative tumor heterogeneity profiling. This study aimed to compare the diagnostic accuracies of the version
2018 (v2018) EASL, LI-RADS criteria and radiomics models for HCC in high-risk patients.

Methods: Ethical approval by the institutional review board and informed consent were obtained for this study.
From July 2015 to September 2018, consecutive high-risk patients were enrolled in our tertiary care hospital and
underwent gadoxetic acid-enhanced magnetic resonance (MR) imaging and subsequent hepatic surgery. We
constructed a multi-sequence-based three-dimensional whole-tumor radiomics signature by least absolute
shrinkage and selection operator model and multivariate logistic regression analysis. The diagnostic accuracies of
the radiomics signature was validated in an independent cohort and compared with the EASL and LI-RADS criteria
reviewed by two independent radiologists.

Results: Two hundred twenty-nine pathologically confirmed nodules (173 HCCs, mean size: 5.74 ± 3.17 cm) in 211
patients were included. Among them, 201 patients (95%) were infected with hepatitis B virus (HBV). The sensitivity
and specificity were 73 and 71% for the radiomics signature, 91 and 71% for the EASL criteria, and 86 and 82% for
the LI-RADS criteria, respectively. The areas under the receiver operating characteristic curves (AUCs) of the radiomics
signature (0.810), LI-RADS (0.841) and EASL criteria (0.811) were comparable.

Conclusions: In HBV-predominant high-risk patients, the multi-sequence-based MR radiomics signature, v2018 EASL
and LI-RADS criteria demonstrated comparable overall accuracies for HCC.
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Background
Hepatocellular carcinoma (HCC) is the fifth most com-
mon malignancy and the second leading cause of
cancer-related death worldwide [1]. Currently, all major
clinical guidelines [2–4] recommend the noninvasive
diagnosis of HCC based on characteristic imaging

findings on computed tomography, magnetic resonance
(MR) imaging and/or contrast-enhanced ultrasound.
With the advent of novel imaging techniques, HCC

diagnostic criteria have been continuously updated to in-
corporate several new imaging features on various mo-
dalities, among which the European Association for the
Study of the Liver (EASL) criteria have been widely con-
sidered as a reliable scheme [2]. However, many of these
criteria lack clear lexicons regarding modality-specific
imaging features [2, 3]. Fortunately, the introduction of
Liver Imaging Reporting and Data System (LI-RADS)
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offered the opportunity to standardize the interpretation,
reporting and data collection of imaging results in pa-
tients at risk for HCC [5]. However, the assessment of
several LI-RADS features can be subjective due to varia-
tions in radiologists’ experience and familiarity with the
system [6, 7]. In addition, LI-RADS is developed and
modified based predominantly on Western data [2, 4],
but the demand for validation of the system in Asian co-
hort remains vital.
Radiomics, which allows quantitative tumor behavior and

heterogeneity profiling by extracting high-throughput data
with advanced image processing techniques [8], may be a
possible approach to improve the accuracy and reproduci-
bility of HCC diagnosis. Previous studies have demon-
strated the potential of radiomics in the diagnosis of focal
liver lesions [9] and several other solid tumors [10–12].
However, evidence regarding the comparison between the
accuracies of radiomics models and existing HCC diagnos-
tic criteria remains limited, and few studies have optimized
the radiomics model with the multidisciplinary approach.
Thus, the aim of this prospective single-center study

was to develop a diagnostic radiomics model for HCC and
to compare its accuracy with the version 2018 (v2018) of
the LI-RADS [5] and European Association for the Study
of the Liver (EASL) criteria [2] in high-risk patients with
surgical histopathologic examination as the reference
standard. We also explored the diagnostic benefit of the
refined radiomics-clinical model incorporating both radio-
mics features and predictive clinical markers.

Methods
Study cohort
Ethical approval by the institutional review board and in-
formed consent from all patients were obtained for this

prospective study before the start of patient enrollment.
From July 2015 to September 2018, we enrolled con-
secutive adult patients with hepatitis B virus infection
and/or cirrhosis to undergo gadoxetic acid (Gd-EOB-
DTPA)-enhanced MR imaging from our tertiary care
hospital. The exclusion criteria were patients i) with
Child-Pugh class C disease; ii) with any previous antitu-
moral treatment (e.g. locoregional, surgical, systematic
etc.); iii) with any contraindication of Gd-EOB-DTPA-
enhanced MR imaging; iv) with inadequate image quality
(e.g. substantial to severe arterial phase motion artifact);
v) who did not receive or were not eligible for liver re-
section or transplantation in our center; vi) with incon-
clusive histopathologic diagnosis.
A total of 283 patients were included during the study

period, and 72 (26%) patients were excluded (Fig. 1).
Therefore, the final study group included 211 patients
(169 males, 80%).

Imaging protocols
All MR examinations were performed on a MAGNETOM
Skyra 3.0 T MR scanner (Siemens Healthcare, Erlangen,
Germany). 0.025mmol/kg of Gd-EOB-DTPA (Primovist®;
Bayer Schering Pharma AG, Berlin, Germany) was
injected at a rate of 2ml/s. The detailed acquisition
parameters were shown in the Additional file 1:
Supplementary material and Table S1.

Image analysis
Qualitative analysis
All MR imaging analyses were performed independently
by two abdominal radiologists (with 10 years and 4 years
of experience in liver imaging, respectively) who were
blinded to the other imaging results, any clinical

Fig. 1 Study flow chart. US = ultrasound; CT = computed tomography; EOB-MRI = gadoxetic acid-enhanced magnetic resonance imaging; TACE =
transarterial chemoembolization; RFA = radiofrequency ablation; LR = liver resection; LT = liver transplantation

Jiang et al. Cancer Imaging           (2019) 19:84 Page 2 of 13



information and the final pathological diagnoses. Before
start of the image analysis, both reviewers were given at
least 2 months of intensive hands-on instructions in the
practice of EASL v2018 and LI-RADS v2018 on Gd-
EOB-DTPA-enhanced MR imaging.
Observations were diagnosed as HCC if they displayed a

combination of arterial phase hyperenhancement and
washout on portal venous phase exclusively by the EASL
v2018 criteria [2]. Using all major, ancillary and LR-M fea-
tures, each observation was assigned to an LR category ac-
cording to the LI-RADS v2018 criteria by navigating the
diagnostic algorithm in a stepwise fashion [5]. LR-4 V, LR-
5 V or LR-MV was defined as LR-TIV contiguous with
LR-4, LR-5 or LR-M lesions, respectively. All patient im-
ages were provided to the reviewers in random sequences,
and both reviewers were asked to gap for at least 1 month
between evaluating according to LI-RADS v2018 and
evaluating according to EASL v2018 criteria. Disagree-
ments regarding the LR categorization and HCC diagnosis
were resolved by consensus with a senior abdominal radi-
ologist with over 30 years of liver imaging experience.

Radiomics analysis
3D regions of interest were placed manually by delineat-
ing along the entire tumor margin on T2-weighted, T1-
weighted in−/opposed-phase, unenhanced, arterial
phase, portal venous phase, and hepatobiliary phase im-
ages to avoid major vessels and any marked necrotic
areas with the 3D segmentation software ITK-SNAP
[13] (version 3.6.0-RC1; http://www.itk-snap.org). The
free-hand outlines were independently drawn by the two
radiologists who conducted qualitative image analyses.
Radiomics analysis was performed with in-house tex-

ture analysis algorithms using the nonpublic scientific
research 3D analysis software Analysis Kit (version
v3.0.1. A, GE Healthcare, China). To standardize the im-
aging data of all MR images, the signal intensity is
aligned to the same level by changing the formula of the
original radiomics feature. In the processing of the pixel
size, we pushed the wavelet transformation and calcu-
lated all features repeatedly. Using bin size as the vari-
able point, one of the key processes in the
standardization of feature extraction was feature discre-
tion, which had a substantial impact on the value of the
radiomics features. A total of 396 radiomics features
from the categories of histogram, gray-level co-
occurrence matrix, run-length matrix, gray-level size
zone matrix, form factor and Haralick were extracted
from each MR image.

Construction and validation of the radiomics models
All nodules were randomly divided into a training co-
hort (137 nodules [60%] in 133 patients) and a validation
cohort (92 nodules [40%] in 78 patients) using repeated

stratified splitting method to reduce the bias selection of a
single validation dataset. In a multivariate analysis, the
number of events should be no less than 10 times the
number of included covariates [14]. Therefore, we applied
the least absolute shrinkage and selection operator
(LASSO) model [15] with 10-fold cross-validation to select
radiomics features with the strongest diagnostic powers in
the training data set. Radiomics features with an intraclass
correlation coefficient over 0.80 between two reviewers
were considered stable and entered into further radiomics
model construction [16]. A radiomics score (Rad-score) of
each MR sequence was calculated by a linear combination
of the selected radiomics features weighted by the corre-
sponding LASSO regression coefficients as:

Rad−score ¼ a1X1 þ a2X2 þ…þ anXn þ b

Where an is the LASSO regression coefficient of variable
n, Xn is the value of the variable n determined from the in-
put MR image and b is the intercept. A summarized Rad-
score of all sequences was generated by a linear combin-
ation of the Rad-score of each sequence weighted by its
logistic regression coefficient to construct the diagnostic
radiomics signature. The radiomics signature was further
integrated with clinical markers that were independently
predictive for HCC diagnosis in the training cohort to for-
mulate a radiomics-clinical nomogram with multivariate
logistic regression analysis. The performances of the
radiomics signature and radiomics-clinical nomogram
were evaluated in the validation cohort (Fig. 2).

Reference standard
Histopathologic examination of the resected or
explanted liver was used as the reference standard for all
lesions. Two experienced pathologists (with 8 years and
over 20 years of experience in liver oncology, respect-
ively), who were aware of the clinical data and imaging
results for co-localization of the target lesions, independ-
ently performed gross and histologic analyses of all
resected or explanted specimens. All disagreements were
resolved by consensus. Histopathologic diagnoses of the
hepatic lesions were established according to the World
Health Organization classification [17].

Statistical analyses
Differences were compared with Student’s test or the
Mann-Whitney U test for continuous variables, and with
χ2test or the Fisher’s exact test for categorical variables,
where applicable. To identify clinical markers predictive
of HCC, binary logistic regression analyses were used,
and variables with a p value< 0.10 were further entered
into the multivariate logistic analysis. Interrater reliabil-
ity was evaluated with Cohen’s kappa coefficient (κ) for
categorical variables. Agreement was considered poor
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(κ < 0.00), slight (κ: 0–0.2), fair (κ: 0.2–0.4), moderate (κ:
0.4–0.6), substantial (κ: 0.6–0.8) or excellent (κ: 0.8–1.0)
[16] accordingly.
Per-lesion diagnostic performances were assessed by

sensitivities, specificities, positive predictive values
(PPVs), negative predictive values (NPVs) and receiver
operating characteristic (ROC) analysis. Diagnostic mea-
sures were compared with the McNemar test or the
method described by DeLong et al [18], where applic-
able. Comparisons of diagnostic accuracies between the
EASL and LI-RADS criteria were conducted in the com-
bined cohort comprising all patients, while all compari-
sons were made in the validation cohort between the
radiomics signature and EASL or LI-RADS criteria.
All statistical analyses were performed with R software,

version 3.3.1 (The R Foundation for Statistical Comput-
ing, Vienna, Austria). P values for multiple comparisons
were adjusted by the Bonferroni method, and p < 0.05
was considered statistically significant.

Results
Patient characteristics
Demographic, clinical and biological information of the in-
cluded patients is summarized in Table 1. A total of 173
nodules in 165 patients were proven as HCCs, 32 nodules in
30 patients as non-HCC malignancies (intrahepatic cholan-
giocarcinoma [ICCA]: n = 22; combined hepatocellular-

cholangiocarcinoma [cHCC-CCA], n = 5; neuroendocrine
tumor: n= 2; metastasis: n = 2; hemangiosarcoma: n= 1),
and the remaining 24 nodules in 16 patients as non-
HCC benign lesions (cavernous hemangioma: n = 6;
angioleiomyolipoma: n = 6; focal nodular hyperplasia:
n = 4; inflammatory pseudotumor: n = 4; dysplastic
nodule: n = 3; hepatic adenoma: n = 1). Mean size of
the included lesions was 5.43 cm (range: 1.0–14.9 cm).
34 (15%), 83 (36%) and 112 (49%) lesions were ≤ 2 cm,
2-5 cm and > 5 cm, respectively.
Among the included patients, 201 (95%) were infected

with HBV. No difference of the nodule type proportion
(HCC, non-HCC malignancy and non-HCC benign le-
sion) or any demographic, clinical or biological charac-
teristic was detected between the training and validation
cohorts (p > 0.05 for all).

Interrater agreement assessment
Table 2 summarizes the interrater reliability results of
the EASL v2018 and different LI-RADS categories for all
229 nodules. Agreement was substantial between the
two reviewers for each LI-RADS category (κ = 0.7437),
the combination of LR-5/LR-5 V (κ = 0.6542), LR-4/LR-
4 V/LR-5/LR-5 V (κ = 0.7109) and the EASL v2018 re-
sults (κ = 0.6809).
Agreement was substantial to almost perfect for all LI-

RADS major features and most ancillary and tiebreaking

Fig. 2 Workflow of construction and validation of the radiomics models. ROI = region of interest; GLCM = gray-level co-occurrence matrix; RLM =
run-length matrix; GLSZM = gray-level size zone matrix
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features (Additional file 2: Table S2). Agreement was not
evaluated for nodule size or growth, which were pro-
vided to the reviewers.

Construction and validation of the radiomics models
After LASSO regression analysis in the training data
set, a total of 18 features with nonzero regression

coefficients were extracted from T1-weighted in-
phase, opposed-phase, arterial phase, portal venous
phase images and T2-weighted images (Add-
itional file 3: Table S3). After multivariate logistic re-
gression analysis, the summarized Rad-score (Fig. 3a)
revealing the radiomics information of all predictive
sequences was generated as:

Table 1 Patient characteristics

Patient characteristics HCC non-HCC malignancies non-HCC benign lesions

No. of patients 165 30 16

No. of lesions 173 32 24

Sex (male) 133 (80.6%) 24 (80.0%) 12 (75.0%)

Age (years, mean [range]) 51.2 (26–83) 53.6 (39–77) 49.1 (30–60)

Size (cm, mean ± SD) 5.74 ± 3.17 5.64 ± 2.36 2.93 ± 2.43

Interval between MR imaging and surgery (d, mean ± SD) 2.73 ± 1.99 2.81 ± 2.25 4.62 ± 7.13

Underlying Diseases

HBV-related cirrhosis 108 10 6

HBV carrier (not cirrhotic) 52 16 9

Cirrhosis of other causes 5 4 1

Child-Pugh Class

A 164 (99.4%) 27 (90.0%) 16 (100.0%)

B 1 (0.6%) 3 (10.0%) 0

ALT (IU/L)

>40 68 (41.2%) 6 (20.0%) 2 (12.5%)

AST (IU/L)

>35 84 (50.9%) 7 (23.3%) 1 (6.3%)

TBIL (umol/L)

>28.0 11 (6.7%) 4 (13.3%) 1 (6.3%)

IBIL (umol/L)

>20.0 6 (3.6%) 5 (16.7%) 1 (6.3%)

ALB (g/L)

<35 4 (2.4%) 2 (6.7%) 0

PT (s)

>12.8 42 (25.5%) 4 (13.3%) 0

PLT (×10^9/L)

<100 30 (18.2%) 3 (10.0%) 2 (12.5%)

HBsAg (COI)

>10 105 (84.8%) 12 (40.0%) 9 (56.3%)

AFP (ng/ml)

>20 105 (63.6%) 10 (33.3%) 1 (6.3%)

CEA (ng/ml)

>3.4 29 (17.6%) 11 (36.7%) 1 (6.3%)

CA 19–9 (U/ml)

>22 68 (41.2%) 15 (50.0%) 0

Abbreviations: HCC hepatocellular carcinoma, SD standard deviation, MR magnetic resonance, CT computed tomography, HBV hepatitis B virus, NAFLD non-
alcoholic fatty liver disease, ALT alanine aminotransferase, AST aspartate aminotransferase, TBIL total bilirubin, IBIL indirect bilirubin, ALB albumin, PT prothrombin
time, PLT platelet, HBsAg hepatitis B virus surface antigen, AFP alpha-fetoprotein, CEA carcinoembryonic antigen, CA 19–9 carbohydrate antigen 19–9
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Rad−score ¼ in−phase Rad−score� 2:046
þopposed−phase Rad−score � 0:083
þarterial phase Rad−score� 1:500
þportal venous phase Rad−score� 1:316
�T2−weighted image Rad−score� 4:048
þ0:137

Serum AFP (p<0.001), HBsAg (p = 0.01), AST (p =
0.046), IBIL (p<0.001) and ALB (p = 0.049) were signifi-
cantly predictive of HCC after multivariate logistic re-
gression analysis in the training data set and were
incorporated with the Rad-score to formulate a
radiomics-clinical nomogram (Fig. 3c).

Diagnostic accuracy of the radiomics models, EASL and
LI-RADS criteria
Table 3 summarizes the diagnostic performances of the
radiomics model, EASL and LI-RADS v2018 criteria by
consensus.

The radiomics models
The AUCs of the radiomics signature were 0.861 and
0.810 in the training and validation cohort, respectively
(Fig. 3b). These measures were 0.982 and 0.866 for the
radiomics-clinical nomogram in the training and valid-
ation cohort, respectively. In the validation cohort, the
sensitivity, specificity, PPV and NPV of the radiomics
signature and radiomics-clinical model were 73, 77, 91,

Table 2 Interrater reliability analysis of v2018 EASL and LI-RADS categories

LR categories for reviewer 1 LR category for reviewer 2 κ value Agreement

LR-1 LR-2 LR-3 LR-4 LR-4 V LR-5 LR-5 V LR-M LR-MV All

Agreement on all LR categories

LR-1 12 0 0 1 0 0 0 0 0 13 0.7437 (0.6644–0.8230) Substantial

LR-2 0 2 0 0 0 0 0 1 0 3

LR-3 0 0 0 0 0 0 0 0 0 0

LR-4 1 1 0 6 0 6 0 0 0 14

LR-4 V 0 0 0 0 0 2 0 1 0 3

LR-5 0 0 0 7 0 118 2 1 0 128

LR-5 V 0 0 0 0 0 2 27 1 1 31

LR-M 0 0 1 1 0 7 3 13 3 28

LR-MV 0 0 0 0 0 1 3 0 5 9

All 13 3 1 15 0 136 35 17 9 229

Agreement on LR-5/LR-5 V vs others

Results for reviewer 1 Results for reviewer 2

LR-5/LR-5 V others All

LR-5/LR-5 V 149 10 159 0.6542 (0.5453–0.7631) Substantial

others 22 48 70

All 171 58 229

Agreement on LR-4/LR-4 V/LR-5/LR-5 V vs others

Results for reviewer 1 Results for reviewer 2

LR-4/LR-4 V/LR-5/LR-5 V others All

LR-4/LR-4 V/LR-5/LR-5 V 170 6 176 0.7109 (0.5985–0.8233) Substantial

others 16 37 53

All 186 43 229

Agreement on EASL v2018

Results for reviewer 1 Results for reviewer 2

0 1 All

0 40 14 54 0.6809 (0.5674–0.7944) Substantial

1 12 163 175

All 52 177 229

Abbreviations: LI-RADS Liver Imaging Reporting and Data System, EASL European Association for the Study of the Liver, MRI magnetic resonance imaging, LR-4 V
LR-TIV in the presence of LR-4 lesions, LR-5 V LR-TIV in the presence of LR-5 lesions, LR-MV LR-TIV in the presence of LR-M lesions
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47 and 77%, 68, 89, 48%, respectively. No difference was
detected between any paired diagnostic measure for the
radiomics signature and radiomics-clinical model in the
validation cohort (Fig. 3d) or for the radiomics signature
in the training and validation cohorts (Fig. 3b).

EASL v2018
The sensitivity, specificity, PPV, NPV and AUC of the
EASL v2018 criteria for all nodules were 91, 71, 91, 71%
and 0.811, respectively. These measures were 92, 63, 92,
63%, and 0.772 for patients with cirrhosis, and 89, 78,
89, 78% and 0.833 for patients without cirrhosis. There’s
no difference between any paired measures according to
the status of underlying cirrhosis. When stratified by
nodule sizes, the diagnostic accuracy was the highest in
nodules > 2 cm but≤5 cm (AUC = 0.835, 95%CI: 0.738–

0.908) and the lowest in nodules≤2 cm (AUC = 0.775,
95%CI: 0.599–0.900).

LI-RADS v2018
According to the LR categories in consensus, 0/13 (0%), 0/
3 (0%), 13/17 (76.5%), 149/159 (93.7%) and 11/37 (29.7%)
LR-1, LR-2, LR-4/LR-4 V, LR-5/LR-5 V and LR-M/LR-
MV lesions were HCC, respectively. The per-lesion sensi-
tivity, specificity, PPV, NPV and AUC for all nodules were
86, 82, 94, 66% and 0.841 by combination of LR-5/LR-5 V
and 94, 73, 92, 79% and 0.834 by combination of LR-4/
LR-4 V/LR-5/LR-5 V, respectively. The combination of
LR-4/LR-4 V/LR-5/LR-5 V demonstrated a significantly
higher sensitivity than LR-5/LR-5 V in all nodules (p =
0.02) and nodules between 2 and 5 cm (p = 0.01), without
loss of specificity. However, the differences in AUCs

Fig. 3 The radiomics models and their receiver operating (ROC) curves. The radiomics signature (a) and radiomics-clinical model (c) described in
the form of nomograms to estimate the risk of a focal liver lesion to be HCC. Locate each variable on the corresponding axis, draw a line straight
upward to the Points axis to determine the number of points, add the points from all the variables to get a total point, and draw a line straight
down from the “Total Points” axis to the “Risk of hepatocellular carcinoma” axis to determine the HCC probability. b ROC curves of the radiomics
signature in the training (red line) and validation cohorts (blue line). No difference (p = 0.521) (DeLong test) was detected between the area
under the curve (AUCs) of the radiomics signature in the training cohort (0.861, 95%CI: 0.789–0.932) and in the validation model (0.810, 95%CI:
0.690–0.931). d ROC curves of the radiomics signature (red line) and radiomics-clinical model (blue line) in the validation cohort. No difference
(p = 0.213) (DeLong test) was detected between the AUCs of the radiomics signature (0.810, 95%CI: 0.690–0.931) and the radiomics-clinical model
(0.866, 95%CI: 0.782–0.951)
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Table 3 Diagnostic performances of the radiomics model, EASL and LI-RADS criteria

All
lesions

EASLa LI-RADSa Radiomics modelb p value‡

L5/5V L4/4V/5/5 V p value¶ EASL vs
Radd

EASL vs
L5/5V¶

Rad vs
L5/5Vd

All nodules, n = 229

Sen 91% (95%CI:
0.85–0.95)

86% (95%CI:
0.80–0.91)

94% (95%CI: 0.89–0.97) 0.019 73% (95%CI: 0.61–0.83) 0.006 0.531 0.076

Spe 71% (95%CI:
0.58–0.83)

82% (95%CI:
0.70–0.91)

73% (95%CI: 0.60–0.84) 0.254 77% (95%CI: 0.55–0.92) 1.000 0.528 1.000

PPV 91% (95%CI:
0.87–0.94)

94% (95%CI:
0.89–0.86)

92% (95%CI: 0.87–0.94) 0.999 91% (95%CI: 0.8–0.97) 1.000 1.000 1.000

NPV 71% (95%CI:
0.60–0.80)

66% (95%CI:
0.56–0.74)

79% (95%CI: 0.67–0.87) 0.101 47% (95%CI: 0.3–0.65) 0.056 1.000 0.199

AUC 0.811 (95%CI:
0.754–0.859)

0.841 (95%CI:
0.787–0.886)

0.834 (95%CI: 0.780–0.880) 0.745 0.810 (95%CI: 0.690–0.931) 1.000 0.761 1.000

Cirrhotic liver, n = 136

Sen 92% (95%CI:
0.85–0.96)

86% (95%CI:
0.78–0.92)

93% (95%CI: 0.86–0.97) 0.082 70% (95%CI: 0.55–0.83) 0.007 0.408 0.112

Spe 63% (95%CI:
0.41–0.81)

79% (95%CI:
0.58–0.93)

71% (95%CI: 0.49–0.87) 0.503 62% (95%CI: 0.32–0.86) 1.000 0.588 0.797

PPV 92% (95%CI:
0.87–0.95)

95% (95%CI:
0.90–0.98)

94% (95%CI: 0.89–0.97) 0.999 87% (95%CI: 0.72–0.96) 1.000 1.000 1.000

NPV 63% (95%CI:
0.45–0.77)

54% (95%CI:
0.42–0.66)

68% (95%CI: 0.51–0.81) 0.275 36% (95%CI: 0.17–0.59) 0.199 1.000 0.530

AUC 0.772 (95%CI:
0.693–0.840)

0.824 (95%CI:
0.750–0.884)

0.818 (95%CI: 0.743–0.879) 0.849 0.715 (95%CI: 0.524–0.906) 1.000 0.612 0.897

Non-cirrhotic liver, n = 93

Sen 89% (95%CI:
0.78–0.95)

87% (95%CI:
0.76–0.94)

95% (95%CI: 0.86–0.99) 0.668 78% (95%CI: 0.56–0.93) 0.843 1.000 1.000

Spe 78% (95%CI:
0.60–0.91)

84% (95%CI:
0.67–0.95)

75% (95%CI: 0.57–0.89) 0.275 100% (95%CI: 0.66–1) 0.008 1.000 0.045

PPV 89% (95%CI:
0.80–0.94)

91% (95%CI:
0.82–0.96)

88% (95%CI: 0.80–0.93) 0.994 100% (95%CI: 0.81–1) 1.000 1.000 1.000

NPV 78% (95%CI:
0.63–0.88)

77% (95%CI:
0.63–0.87)

89% (95%CI: 0.72–0.96) 0.503 64% (95%CI: 0.35–0.87) 1.000 1.000 1.000

AUC 0.833 95%CI:
0.742–0.903)

0.856 (95%CI:
0.768–0.920)

0.850 (95%CI: 0.761–0.916) 0.852 0.923 (95%CI: 0.829–1) 0.631 1.000 0.981

≤2 cm, n = 34

Sen 86% (95%CI:
0.64–0.97)

76% (95%CI:
0.53–0.92)

95% (95%CI: 0.76–1) 0.067 38% (95%CI: 0.09–0.76) 0.030 1.000 0.141

Spe 69% (95%CI:
0.39–0.91)

77% (95%CI:
0.46–0.95)

62% (95%CI: 0.32–0.86) 0.389 88% (95%CI: 0.47–1) 0.876 0.606 1.000

PPV 82% (95%CI:
0.66–0.91)

84% (95%CI:
0.66–0.94)

80% (95%CI: 0.67–0.89) 0.992 75% (95%CI: 0.19–0.99) 1.000 1.000 1.000

NPV 75% (95%CI:
0.50–0.90)

67% (95%CI:
0.47–0.82)

89% (95%CI: 0.53–0.98) 0.166 58% (95%CI: 0.28–0.85) 1.000 1.000 1.000

AUC 0.775 (95%CI:
0.599–0.900)

0.766 (95%CI:
0.589–0.893)

0.784 (95%CI: 0.610–0.906) 0.788 0.859 (95%CI: 0.658–1) 1.000 1.000 1.000

>2 cm, ≤5 cm, n = 83

Sen 85% (95%CI:
0.74–0.93)

80% (95% CI:
0.68–0.89)

95% (95% CI: 0.86–0.99) 0.011 68% (95%CI: 0.45–0.86) 0.354 1.000 0.829

Spe 82% (95%CI:
0.60–0.95)

91% (95% CI:
0.71–0.99)

82% (95% CI: 0.60–0.95) 0.375 82% (95%CI: 0.48–0.98) 1.000 1.000 1.000

PPV 93% (95%CI:
0.84–0.97)

96% (95%CI:
0.87–0.99)

94% (95% CI: 0.86–0.97) 0.997 88% (95%CI: 0.64–0.99) 1.000 1.000 1.000
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between these two combinations were not significant (p =
0.32–0.85).

Comparisons between the radiomics signature, the EASL
and LI-RADS criteria
Diagnostic results by LR-5/LR-5 V were used to repre-
sent the LI-RADS v2018 performances. After p value ad-
justment for multiple comparisons, the v2018 EASL and
LI-RADS criteria yielded comparable diagnostic accur-
acies for HCC irrespective of underlying cirrhosis or le-
sion size. In the validation cohort, the EASL v2018
demonstrated significantly higher sensitivity than the
radiomics signature in all nodules (p = 0.01), cirrhotic
livers (p = 0.01) and in nodules ≤2 cm (p = 0.03). The
radiomics signature is more specific than the EASL (p =
0.01) and LI-RADS (p = 0.045) in non-cirrhotic livers.
The AUCs of all three diagnostic models were compar-
able in the validation data set.

Discussion
Both updated in 2018, the EASL and LI-RADS criteria are
currently the most widely used diagnostic criteria for
HCC. However, concerns have been raised for both cri-
teria regarding their applicability in Asian cohort and with
hepatobiliary-specific contrast agents. Advances in radio-
mics have led to improved tumor-heterogeneity quantifi-
cation and may assist in liver lesion characterization [9].
In this prospective study, we found that the multi-

sequence-based MR radiomics signature, the LI-RADS
v2018 and the EASL v2018 demonstrated comparable
diagnostic accuracies for HCC in high-risk patients.
First, we constructed a multi-sequence-based MR radio-

mics signature in the training cohort and compared its
diagnostic accuracy with EASL and LI-RADS criteria ex-
clusively in the validation cohort to eliminate the effect of
overfitting. We found that the AUCs of the radiomics sig-
nature were similar to EASL and LI-RADS criteria irre-
spective of lesion size and the presence of underlying
cirrhosis. Notably, in non-cirrhotic patients, the radiomics
signature demonstrated 100% specificity, which was sig-
nificantly higher than both EASL (p = 0.008) and LI-RADS
(p = 0.045) criteria, with an excellent AUC of 0.923. Since
HBV chronic infection is currently the leading risk factor
for HCC in Asian countries [3] and in this context many
HCCs can develop without cirrhosis, the radiomics signa-
ture may play a pivotal role in increasing the diagnostic
specificity and overall accuracy for these patients. How-
ever, the radiomics signature was less sensitive than EASL
criteria, particularly in cirrhotic livers and for lesions≤2
cm, and these might have been explained by the fact that
radiomics signatures constructed in small lesions could
not usually provide sufficient biological information in a
reliable fashion, as many such small lesions have not de-
veloped in the full spectrum [19].
Extracted from clinical radiologic images, radiomics

features can indicate the gene expression profiles of

Table 3 Diagnostic performances of the radiomics model, EASL and LI-RADS criteria (Continued)

All
lesions

EASLa LI-RADSa Radiomics modelb p value‡

L5/5V L4/4V/5/5 V p value¶ EASL vs
Radd

EASL vs
L5/5V¶

Rad vs
L5/5Vd

NPV 67% (95%CI:
0.51–0.79)

63% (95%CI:
0.50–0.74)

86% (95%CI: 0.66–0.95) 0.043 56% (95%CI: 0.30–0.80) 1.0001 1.000 1.000

AUC 0.835 (95%CI:
0.738–0.908)

0.856 (95%CI:
0.762–0.924)

0.885 (95%CI: 0.796–0.944) 0.466 0.806 (95%CI: 0.617–0.994) 1.000 1.000 1.000

>5 cm, n = 112

Sen 96% (95%CI:
0.89–0.99)

92% (95% CI:
0.85–0.97)

92% (95% CI: 0.85–0.97) 1.000 83% (95%CI: 0.67–0.93) 0.063 1.000 0.514

Spe 62% (95%CI:
0.38–0.82)

76% (95% CI:
0.53–0.92)

71% (95% CI: 0.48–0.89) 0.725 67% (95%CI: 0.09–0.99) 1.000 0.933 1.000

PPV 92% (95%CI:
0.86–0.95)

94% (95%CI:
0.89–0.97)

93% (95%CI: 0.88–0.97) 0.999 93% (95%CI: 0.81–0.99) 1.000 1.000 1.000

NPV 76% (95%CI:
0.54–0.90)

70% (95%CI:
0.52–0.83)

68% (95%CI: 0.50–0.82) 0.920 22% (95%CI: 0.09–0.45) 1.000 1.000 1.000

AUC 0.788 (95%CI:
0.700–0.859)

0.842 (95%CI:
0.762–0.904)

0.819 (95%CI: 0.735–0.885) 0.317 0.746 (95%CI: 0.590–0.866) 0.303 0.915 0.627

Abbreviations: EASL European Association for the Study of the Liver, LI-RADS Liver Imaging Reporting and Data System, L4 LR-4, 4 V LR-TIV in the presence of LR-4
lesions, L5 LR-5, 5 V LR-TIV in the presence of LR-5 lesions, Rad radiomics model, Sen sensitivity, Spe specificity, PPV positive predictive value, NPV negative
predictive value, AUC area under the receiver operating characteristic curve
aDiagnostic measures were evaluated in the combined cohort comprising all patients
bDiagnostic measures were evaluated in the validation cohort
dComparisons were made in the validation cohort
‡P values were corrected with the Bonferroni method
¶Comparisons were made in the combined cohort comprising all patients
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HCC [20] and reveal key phenotypic characteristics in-
cluding tumor growth and vascular invasion [21–23]. In
our multi-sequence-based radiomics signature, most ex-
tracted imaging features belonged to the gray-level co-
occurrence matrix (61%, 11/18) and run-length matrix
(28%, 5/18) categories. Gray-level co-occurrence matrix
parameters can depict tumor texture described by pixel
spatial relationships [24]. Run-length matrix features en-
able evaluation of the complex 3D structures labelled
with the same grey level values and have been reported
to indicate HCC aggressiveness on Gd-EOB-DTPA-en-
hanced MR imaging [19]. However, the one-to-one cor-
relations between numerous radiomics features and
complex tumor biology processes are still unclear and
need to be explored in further studies.
Interestingly, we found that the radiomics-clinical model

incorporating predictive clinical markers showed no diag-
nostic benefit compared with the sole radiomics signature.
This finding highlighted the central role of imaging exami-
nations in HCC diagnostic workflow and indicated that
clinical markers may provide limited information for liver
lesion characterization in high-risk patients.
Afterwards, we compared the performances between

EASL and LI-RADS criteria in the combined cohort

comprising all patients. Both criteria demonstrated simi-
lar diagnostic accuracies irrespective of lesion size and
the underlying cirrhosis status, which were in line with
the study of Ronot et al [25]. However, despite that both
EASL and LI-RADS were developed and modified in
order to be nearly 100% specific, we reported relatively
low specificities of both criteria. These results were not
in accordance with previous studies [25–28], in which
the specificities of previous EASL and LI-RADS cri-
teria reached up to 87.6–98.6% [25, 26] and 83.6–
100% [25–28], respectively.
Therefore, we explored origins of the restricted speci-

ficities on a per-lesion level. Among all false-positive
cases, 9 (Fig. 4) were misclassified by both EASL and LI-
RADS criteria (cHCC-CCA: n = 3; ICCA: n = 2; neuroen-
docrine tumor: n = 2; inflammatory pseudotumor: n = 1;
angioleiomyolipoma: n = 1), 7 exclusively by EASL cri-
teria (ICCA: n = 5; cHCC-CCA: n = 1; dysplastic nodule:
n = 1) and 1 exclusively by LI-RADS criteria (ICCA).
85% (6/7) of the false-positive lesions misdiagnosed ex-
clusively by EASL criteria presented the “targetoid ap-
pearance”, a target-like imaging morphology as a result
of the highly cellular peripheral area surrounding the
central fibrotic/ischemic stroma according to LI-RADS

Fig. 4 Gd-EOB-DTPA-enhanced MR images of a 47-year-old man with chronic HBV infection and pathologically proven cirrhosis. Images of un-
enhanced phase (a) show a hypointense mass predominantly in segment VI. The mass demonstrates typical arterial phase (b) hyperenhancement
(not rim), portal venous phase (c) washout and moderate T2 hyperintensity (e). No targetoid appearance is identified on hepatobiliary phase (d)
or diffusion-weighted (f, b = 1200s/mm2) images. Note the peritumoral corona enhancement (b, white arrow heads) pattern in arterial phase due
to venous drainage from the tumor. The mass was histopathologically proven to be intrahepatic cholangiocarcinoma with hematoxylin-eosin
staining at 200 ×magnification (g). Cytokeratin 19 is positive at 200 ×magnification with immunohistochemical staining (h). The serum alpha-
fetoprotein (4.91 ng/ml) and carcinoembryonic antigen 19–9 (17.44 U/ml) levels were within the normal range
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criteria [5]. This feature is highly indicative of ICCA,
cHCC-CCA and other non-HCC malignancies. In our
study, the “targetoid appearance” was significantly more
common in non-HCC malignancies (75.0%) than in
HCCs (7.5–9.8%) (both p < 0.001), as previously reported
[7, 29]. Thus, a possible approach to improve the specifi-
city of EASL criteria for HCC is to eliminate the effect
of the “targetoid appearance” from the diagnostic
algorithm.
However, neither EASL nor LI-RADS criteria dem-

onstrated satisfactory specificities even after eliminat-
ing the effect of the “targetoid appearance”,
particularly in differentiating between HCC and non-
HCC malignancies in cirrhotic patients. One possible
explanation was that 49% (112/229) of the included
lesions were>5 cm. As larger lesions are more likely
to demonstrate significant intratumoral heterogeneity
and atypical imaging features, differential diagnosis of
these tumors can be particularly challenging due to
considerable clinical and imaging overlaps. By sub-
group analysis, we reported the lowest specificities for
both EASL and LI-RADS criteria in nodules>5 cm,
which might have affected the overall diagnostic re-
sults substantially. Another likely explanation for the
limited specificities was that 64% (134/211) of the in-
cluded patients were cirrhotic, and small duct type
ICCAs and cHCC-CCAs, can mimic HCCs in cir-
rhotic patients [30–32]. Similarly, Choi et al reported
a relatively low specificity (87%) for LI-RADS v2017
in differentiating between HCC, ICCA and cHCC-
CCA in HBV-predominant patients [32]. As both
EASL and LI-RADS were developed in Western coun-
tries, where hepatitis C virus infection is the most im-
portant risk factor for HCC [2, 4], the diagnostic
dilemma caused by these mimickers in chronic HBV
patients may not be well addressed by either EASL or
LI-RADS criteria.
In summary, the radiomics signature demonstrated

comparable AUC for HCC with the v2018 EASL and
LI-RADS but significantly higher specificity in non-
cirrhotic patients, which may be clinically beneficial
for patient with chronic HBV infection. However, the
sensitivity of it was limited and the diagnostic results
were difficult to interpret. In addition, radiomics re-
sults are prone to overfitting and the influence of im-
aging collection and modality variation [33, 34]. Thus,
one of the key aspects of applying radiomics results
in daily clinical practices is optimal acquisition and
integration of curated data in a standardized and re-
producible manner.
The EASL criterion is currently the most widely used

diagnostic criteria for HCC. It is sensitive for small le-
sions, easy to apply and does not require the use of ad-
vanced imaging techniques. However, its accuracy might

be restricted by relatively low specificity. LI-RADS em-
powers HCC probability assessment by integrating vari-
ous imaging features with standardized interpretation
and reporting. However, the diagnostic performances of
LI-RADS were suboptimal in our HBV-predominant co-
hort. Apart from the geographical discrepancies of HCC
between Western and Eastern cohorts, another possible
explanation for the suboptimal performance of LI-RADS
in this study might be the fact that LI-RADS was pre-
dominantly designed for MR using extracellular contrast
agents instead of Gd-EOB-DTPA. Therefore, further tai-
loring of the system in Asian cohort using Gd-EOB-
DTPA is necessary to optimize patient management. In
addition, all LI-RADS ancillary features are weighted
equally and optional, but some features (e.g. hepatobili-
ary phase hypointensity and restricted diffusion) may
merit more emphasis or weighting [35]. Notably, com-
bining LR-4 with LR-5 [26, 27] might be a possible ap-
proach to improve the sensitivity of LI-RADS in Eastern
cohort.
This study has several limitations. First, the con-

secutive prospective cohort consisted of limited num-
bers of non-HCC and small HCC lesions. The small
sample sizes of these specific categories of hepatic
nodules might introduce significant selection bias to
our diagnostic results. However, only patients with re-
liable pathological results were included, and many
patients with small HCCs or non-HCC lesions were
excluded because they were not candidates for sur-
gery (e.g., some non-HCC benign lesions), received al-
ternative therapies (e.g., ablation for small HCCs) or
did not have conclusive histopathologic results. How-
ever, a different study design, such as using either
histopathologic diagnosis or imaging follow-up as the
reference standard might provide a larger number of
these lesions. Second, we did not conduct multicenter
external validation for the radiomics models due to
dramatic variations in MR imaging protocols and sur-
gical procedures across different centers. To overcome
this limitation, we assessed the performance of the
radiomics-clinical model in an independent validation
cohort in our center. However, further prospective
studies with multicenter large-scale external validation
are warranted to assess the reproducibility and
generalizability of the reported findings.

Conclusions
The multi-sequence-based MR radiomics signature was
significantly more specific in non-cirrhotic patients than
v2018 EASL and LI-RADS criteria for HCC in HBV-
predominant high-risk patients. However, the radiomics
signature was less sensitive than v2018 EASL. The over-
all accuracies of these three diagnostic approaches were
comparable.
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