
RESEARCH ARTICLE Open Access

18F-FDG-PET-based Radiomics signature
predicts MGMT promoter methylation
status in primary diffuse glioma
Ziren Kong1,2†, Yusong Lin3,10†, Chendan Jiang1†, Longfei Li3, Zehua Liu3, Yuekun Wang1, Congxin Dai1,
Delin Liu1,2, Xuying Qin5,9, Yu Wang1, Zhenyu Liu4,8, Xin Cheng2* , Jie Tian4,6,7,8* and Wenbin Ma1*

Abstract

Background: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter has
emerged as a favorable independent prognostic and predictive biomarker in glioma. This study aimed to build a
radiomics signature based on 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for noninvasive
measurement of the MGMT promoter methylation status in glioma.

Methods: One hundred and seven pathology-confirmed primary diffuse glioma patients were retrospectively
included and randomly assigned to the primary (n = 71) or validation cohort (n = 36). The MGMT promoter
methylation status was measured by pyrosequencing. A total of 1561 radiomics features were extracted from the
three-dimensional region of interest (ROI) on the standard uptake value (SUV) maps that were generated from the
original 18F-FDG PET data. A radiomics signature, a clinical signature and a fusion signature that combined the
clinical and radiomics features together were generated. The performance of the three signatures was evaluated by
receiver operating characteristic (ROC) curve analysis, and the patient prognosis was stratified based on the MGMT
promoter methylation status and the signature with the best performance.

Results: Five radiomics features were selected to construct the radiomics signature, and displayed the best
performance with area under the receiver operating characteristic (ROC) curve (AUC) reaching 0.94 and 0.86 in the
primary and validation cohorts, respectively, which outweigh the performances of clinical signature and fusion
signature. With a median follow-up time of 32.4 months, the radiomics signature stratified the glioma patients into
two risk groups with significantly different prognoses (p = 0.04).

Conclusions: 18F-FDG-PET-based radiomics is a promising approach for preoperatively evaluating the MGMT
promoter methylation status in glioma and predicting the prognosis of glioma patients noninvasively.
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Background
Glioma is one of the most malignant central nervous
system (CNS) tumors, with an annual incidence of 5.26
per 100,000 individuals [1]. Alkylating agents, such as
temozolomide (TMZ), induce guanine-alkyl groups to
the DNA and trigger tumor cell death, and have been
widely utilized in the treatment of glioma [2, 3]. This
methylation damage to DNA can be remedied by a DNA
repair enzyme, O6-methylguanine-DNA methyltransfer-
ase (MGMT), which can be epigenetically silenced ac-
cording to its promoter methylation status, making the
MGMT promoter methylation status a strong prognostic
and predictive biomarker in glioma [3–5] that is rou-
tinely measured in the clinical evaluation of glioma pa-
tients. However, the MGMT status is mainly assessed
based on tumor samples by pyrosequencing, methyla-
tion-specific polymerase chain reaction (PCR) or methy-
lation chip analysis [6–8], and these methods are
restricted by comparatively long detection periods and
high detection costs, the existence of intratumor hetero-
geneity, and the unattainability of tumor samples
through surgery or biopsy. Therefore, noninvasive meas-
urement of the MGMT promoter methylation status has
great clinical significance to precisely guide treatment
and predict prognosis.
Radiomics, a recently emerging technique for quantify-

ing tumor characteristics with high-throughput radiomics
features, allows prediction of the tumor phenotype
through mathematic models that are built with selected
radiomics features [9]. Current radiomics studies in the
glioma field have shown promising results in demonstrat-
ing correlations between magnetic resonance imaging
(MRI) features and clinical manifestations [10], WHO
grades [11], molecular characteristics [12–15], and prog-
noses [16]. Specifically, Li et al. and Xi et al. predicted the
MGMT promoter methylation status in glioblastoma [13,
14] and Wei et al. investigated the imaging features of
WHO grade II-IV astrocytoma [15] using radiomics, sug-
gesting the efficacy of using radiomics to predict the
MGMT promoter methylation status.

18F-fluorodeoxyglucose (FDG) positron emission tom-
ography (PET) is an alternative molecular imaging tech-
nique that has been applied to tumor grading [17],
surgical planning [18], recurrence identification [19],
and prognosis prediction [20] in glioma. In particular,
Choi et al. found that MGMT-methylated WHO grade
III and IV gliomas had a significantly higher maximum
tumor-to-normal tissue uptake ratio (TNR) and identi-
fied a trend of higher mean TNRs in MGMT-methylated
gliomas than in MGMT-unmethylated gliomas [21]. In
addition, Colavolpe et al. reported a case of multicentric
glioblastoma in which the lesion showed higher MGMT
expression and intense 18F-FDG uptake [22], suggesting
a potential correlation between the 18F-FDG-PET results

and the MGMT promoter methylation status in glioma.
However, to the best of our knowledge, no studies have
focused on predicting the MGMT promoter methylation
status using an 18F-FDG-PET-based radiomics approach.
Since the MGMT promoter methylation status has been
proven to be an independent prognostic and predictive
marker in glioma regardless of the WHO classification
or chemotherapy regimen [3–5, 23, 24], prediction of
the MGMT promoter methylation status using 18F-
FDG-PET radiomics may have great clinical potential.
This study retrospectively investigated the radiomics

characteristics of gliomas by 18F-FDG-PET to build a
conceivable model for predicting the MGMT promoter
methylation status and patient prognosis noninvasively.

Methods
Patients
Patients who were pathologically diagnosed with primary
glioma and underwent an 18F-FDG-PET/CT examin-
ation between March 2010 and May 2018 at Peking
Union Medical College Hospital were retrospectively
reviewed. The inclusion criteria included the following:
1) adults with histopathologically confirmed WHO grade
II-IV primary diffuse glioma without a previous history
of CNS tumors; 2) preoperative 18F-FDG PET/CT exam-
ination of the brain; 3) sufficient paraffin-embedded
tumor tissue for measurement of the MGMT promoter
methylation status; and 4) no chemotherapy or radio-
therapy delivered before 18F-FDG PET/CT acquisition
and surgery. The study design was approved by the In-
stitutional Review Board, and all patients provided in-
formed consent. A total of 107 patients met the
inclusion criteria and were randomly assigned to the pri-
mary cohort (n = 71) or the validation cohort (n = 36).
The patient recruitment pathway is displayed in Fig. 1.

MGMT promoter methylation status measurement
The methylation status of the MGMT promoter was
measured by pyrosequencing, as previously described
[25]. Briefly, DNA was extracted from formalin-fixed,
paraffin-embedded tumor samples with a Simplex OUP®
FFPE DNA Extraction Kit (TIB, China) and quantified
by spectrophotometry with a NanoDrop 2000 system
(Thermo Fisher, US). Bisulfate modification was per-
formed with an EpiTect Bisulfite Kit (Qiagen, Germany),
and PCR was carried out with a DRR007 Kit (Takara,
Japan) using a Verity 96-Well Thermal Cycler (Thermo
Fisher, US). Pyrosequencing was subsequently performed
in 10 CpG island regions within the MGMT promoter
using the PyroMark Q96 system (Qiagen, Germany).
Gliomas were defined as having a methylated MGMT
promoter if the average methylation rate of the CpG re-
gions was greater than or equal to 8%; gliomas were
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defined as having an unmethylated MGMT promoter if
the average methylation rate was less than 8% [25].

18F-FDG-PET/CT data acquisition
18F-FDG was produced using an RDS-111 Cyclotron
(CTI, US). A dose of 5.55MBq (0.15 mCi) 18F-FDG per
kilogram of body weight was intravenously administered
after the patient had fasted at least 4 h and their blood
glucose level was determined not to exceed the normal
limit (6.4 mM). The patient underwent 18F-FDG-PET/
CT on a Biograph 64 TruePoint TrueV PET/CT system
(Siemens Medical Solutions, Germany) after a 40–60
min time lag in standardized conditions (quiet, dimly lit
room with patient’s eyes closed), and acquired 148 axial
slides with an interslice spacing of 3 mm.

Tumor segmentation
The three-dimensional region of interest (ROI) was seg-
mented by two experienced neurosurgeons for the 18F-
FDG-PET data on the merged PET/CT images using
ITK-SNAP software (http://www.itksnap.org/pmwiki/
pmwiki.php), with patients’ contrast-enhanced T1-
weighted images (for contrast-enhanced tumors) and
T2-weighted fluid attenuated inversion recovery (FLAIR)
images (for non-contrast-enhanced tumors) as anatom-
ical reference. The ROIs were subsequently reviewed by
a senior nuclear medical scientist blinded to the patients’
information. If there was a discrepancy of less than 5%
between the ROIs placed by the two neurosurgeons, the
final ROI was defined as the region of overlap, and if the
discrepancy was greater than or equal to 5%, the nuclear
medical scientist made the final decision.

Radiomics feature extraction and selection
Standard uptake value (SUV) maps were generated from
the original 18F-FDG-PET DICOM data using MATLAB
version R2015b (Math Works, US). A total of 1561
radiomics features, including 13 shape and size features,
18 first-order features, 68 texture features, 688 wavelet
features and 680 further filtered (logarithm, square,

exponential, gradient, square root, lbp-2D, lbp-3D) fea-
tures were extracted using PyRadiomics (https://github.
com/Radiomics/pyradiomics) [26]. The radiomics fea-
tures were normalized to the interval of 0 to 1.
The radiomics features were reduced and selected

through sequential application of the Wilcoxon rank-
sum test and multivariate linear logistic regression with
the L1 penalty.

Clinical feature evaluation
Five clinical features, respectively, age, sex, metabolic
pattern (cystic or solid), SUVmax and SUVmean, were
also evaluated. Cystic metabolic tumor was defined as a
lesion with visible marginal 18F-FDG update but signifi-
cant low central radioactivity, and solid metabolic tumor
was defined as a lesion without a significant low meta-
bolic necrosis or cysts inside the ROI [27, 28]. SUVmax
and SUVmean were defined as radiomics feature ‘First
order_Maximum’ and ‘First order_Mean’ that extracted
from the ROI.

Signature construction, validation and evaluation
Three predictive signatures, namely, a radiomics signa-
ture, clinical signature, and fusion signature, were con-
structed. The radiomics signature was generated with
the radiomics features that were previously selected with
a support vector machine (SVM). The clinical signature
was generated with 5 clinical features using the logistic
regression after selection by the Akaike information cri-
terion (AIC). The selected clinical features and selected
radiomics features were combined to generate the fusion
signature using the logistic regression. The 3 signatures
were independently validated in the validation cohort.
The signatures were evaluated in terms of the area

under the receiver operating characteristic (ROC) curve
(AUC), accuracy, sensitivity, specificity, and positive and
negative predictive values. Decision curve analysis was
applied to reflect the clinical utility of the model [29,
30], and the Delong test was utilized to evaluate the dif-
ference in the performance of the models.

Fig. 1 Patient recruitment pathway. A total of 168 patients were screened, and 107 patients were included in the current study. Patients were
randomly assigned to the primary or validation cohort
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Prognosis analysis
The overall survival (OS) of patients was evaluated up to
May 31, 2018. Kaplan-Meier curves were plotted based
on the MGMT promoter methylation status and the sig-
nature with the best performance in stratifying the OS
of patients. The log-rank test was utilized to determine
differences in survival between the groups.

Statistical analysis
Statistical analysis was performed with SPSS Statistics
software, version 18.0 (Chicago, US) and R software, ver-
sion 3.4.1 (https://www.r-project.org/). Statistically sig-
nificant differences were defined by a two-tailed
threshold of p < 0.05.

Results
Clinical characteristics
The clinical characteristics of patients in the primary
and validation cohorts are summarized in Table 1.
The MGMT methylation rate in the primary and val-
idation cohorts was 54.9 and 55.6%, respectively.
There were no significant interclass differences in age,
sex, body weight, metabolic pattern, WHO grade,
SUVmax or SUVmean among the included patients
(p = 0.11–0.84). However, tumors with MGMT pro-
moter methylation tend to have a higher rate for cys-
tic metabolic pattern, and the difference of metabolic
pattern for MGMT methylated and MGMT unmethy-
lated patients reached statistical significance in the
validation cohort (p = 0.20 and 0.02 in the primary
and validation cohort, respectively).

Feature selection and signature construction
Among the 1561 extracted radiomics features, 1543 redun-
dant features were reduced through the Wilcoxon rank-
sum test, and 5 final features were selected by logistic re-
gression with the L1 penalty to build the radiomics signa-
ture. Only the metabolic pattern was selected by the AIC to
build the clinical signature, and the fusion signature was
built based on the radiomics signature and metabolic pat-
tern. The selected radiomics features are shown in Table 2.

Diagnostic performance of the three signatures
The radiomics signature performed the best among the
three signatures in predicting the MGMT promoter
methylation status, reaching an AUC of 0.94 in the pri-
mary cohort and 0.86 in the validation cohort. The clin-
ical signature demonstrated a moderate predictive value
and reached an AUC of 0.64 and 0.69 in the primary
and validation cohorts, respectively. The fusion signature
performed better than the clinical signature but poorer
than the radiomics signature, with an AUC of 0.85 both
in the primary and validation cohorts. The Delong test
demonstrated that the radiomics signature performed
significantly better than the clinical and fusion signa-
tures in the primary cohort (p < 0.0001 and p = 0.036, re-
spectively), but the differences in the validation cohort
were not significant (p = 0.115 and 0.900, respectively)
due to the limited number of patients. The decision
curve reflecting the benefit of the radiomics signature
showed a net benefit outweighing both schemes at any
threshold probability in the primary cohort. The per-
formance of the radiomics, clinical and fusion signatures
is summarized in Table 3. The ROC curves are displayed

Table 1 Patients’ Characteristics of Primary and Validation Cohorts

Characteristics Primary cohort (n = 71) Validation cohort (n = 36) P

Methylated (n = 39) Unmethylated (n = 32) P Methylated (n = 20) Unmethylated (n = 16) P

Age (mean ± SD, years) 50.72 ± 14.01 50.50 ± 14.82 0.95 46.70 ± 12.45 58.33 ± 11.95 0.08 0.65

Gender 0.97 0.45 0.84

Male 23 19 10 10

Female 16 13 10 6

Weight (mean ± SD, kg) 67.24 ± 12.36 64.20 ± 10.11 0.27 69.05 ± 14.74 66.28 ± 9.56 0.50 0.45

Metabolic Pattern 0.20 0.02 0.34

Cystic 23 14 15 6

Solid 16 18 5 10

WHO Grading 0.05 0.08 0.11

Low Grade Glioma 13 2 11 2

High Grade Glioma 26 30 9 14

SUVmax 9.18 ± 4.05 10.51 ± 4.45 0.20 9.89 ± 4.11 7.84 ± 3.28 0.11 0.33

SUVmean 4.00 ± 2.10 4.60 ± 1.86 0.22 4.31 ± 2.01 3.40 ± 1.59 0.14 0.36

Abbreviations: SD Standard deviation, WHO World Health Organization, SUV Standard uptake value
Note: Chi-Square or Fisher Exact tests, as appropriate, were used to compare the differences in categorical variables, while the independent sample t-test was
used to compare the differences in age
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in Fig. 2, and the box plots are demonstrated in Fig. 3.
The decision curve is shown in Fig. 4 (a).

Prognostic performance of the Radiomics signature
Among the 107 included patients, 100 patients who were
known to survive to the closing date or to have an exact
time of death were included in the prognosis analysis,
and the median follow-up time is 32.4 months. Both the
MGMT promoter methylation status and the radiomics
signature stratified the glioma patients into a high-risk
group and a low-risk group (p = 0.0002 and 0.04, re-
spectively), and the differences within the high- and low-
risk groups did not reach statistical significance. The
Kaplan-Meier curves are shown in Fig. 4 (b).

Discussion
In this study, 18F-FDG-PET radiomics features were ex-
tracted, selected and analyzed, and three prediction sig-
natures, respectively, and a radiomics signature, a
clinical signature, and a fusion signature, were built to
predict the MGMT promoter methylation status. The
radiomics signature displayed the best performance, with
an accuracy of 91.3% and an AUC of 0.94 in the primary
cohort, and an accuracy of 77.8% and an AUC of 0.86 in
the validation cohort, respectively. The clinical value of
the radiomics signature was further demonstrated by the
prognosis analysis. These results suggest that 18F-FDG-
PET-based radiomics is a promising method for predict-
ing the MGMT promoter methylation status and

prognosis noninvasively, demonstrating strong potential
for clinical application.
Previous studies on radiological evaluation of the

MGMT promoter methylation status have mainly fo-
cused on the visual features, quantitative parameters or
high-throughput radiomics features [13–15, 31–34] of
gliomas (mostly glioblastomas) based on multimodal
MRI and have reported accuracies ranging from 0.58–
0.89 and AUCs ranging from 0.75–0.92 (without distin-
guishing training and validation data). Our prediction
model demonstrated comparable accuracy and AUC
values, suggesting the capability of 18F-FDG-PET radio-
mics to predict the MGMT promoter methylation status.
However, most previous studies on imaging-based pre-
diction of the MGMT promoter methylation status have
mainly focused on glioblastomas, and limited studies
have included less aggressive gliomas (e.g., lower grade
gliomas, such as WHO grade II and III gliomas), in
which the MGMT promoter status also has prognostic
and predictive value [3–5, 23, 24]. Although there may
be discriminative imaging characteristics, our 18F-FDG-
PET-based radiomics signature can predict the MGMT
promoter methylation status regardless of the WHO
grade (e.g., in lower grade gliomas and glioblastomas) or
pathological information (e.g., in astrocytomas and
oligodendrogliomas), suggesting the capability of nonin-
vasive prediction without previous knowledge based on
tumor samples.
Unlike MRI, which displays the structural characteris-

tics of tumors, PET is a highly sensitive molecular im-
aging technique that reflects the altered tumor
metabolism that is ubiquitous among cancer cells. Ma-
lignant brain tumors usually exhibit an altered glucose
metabolism, in which glucose is converted to pyruvate
and further into lactate instead of entering mitochondria
and the citric acid cycle [35]. 18F-FDG, a glucose
analogue, can be taken up by cells but not further catab-
olized through glycolysis, making it a reliable radiotracer
for measuring cancer cell metabolism. Considering the

Table 2 Selected Features in the Radiomics Signature

Feature Name Matrix Filter

Skewness First Order Logarithm

90 Percentile First Order Logarithm

Median First Order Logarithm

Joint Average GLCM Logarithm

Maximum 2D Diameter Slice Shape Original

Abbreviations: GLCM, Gray-Level Co-occurrence Matrix; 2D, two-dimensional

Table 3 The Performances of the Three Predictive Models

Models AUC (95%CI) ACC (95%CI) SEN (95%CI) SPE (95%CI) PPV (95%CI) NPV (95% CI)

Radiomics model

Primary cohort 0.94 (0.93, 0.96) 91.3% (89.8, 93.3) 94.9% (93.1, 96.6) 87.5% (84.4, 90.7) 90.2% (87.8, 92.8) 93.3% (91.1, 95.6)

Validation cohort 0.86 (0.83, 0.88) 77.8% (75.2, 80.3) 75.0% (71.5, 78.6) 81.3% (77.5, 84.9) 83.3% (80.0, 86.7) 72.2% (68.2, 76.1)

Clinical model

Primary cohort 0.64 (0.61, 0.67) 64.8% (61.9, 67.9) 71.8% (68.1, 75.7) 56.3% (51.6, 61.1) 66.7% (62.9, 70.6) 62.1% (57.3, 67.2)

Validation cohort 0.69 (0.66, 0.72) 66.4% (66.6, 72.3) 75.0% (71.3, 78.5) 62.5% (58.1, 67.0) 71.4% (67.9, 75.1) 66.7% (61.9, 71.1)

Fusion model

Primary cohort 0.85 (0.83, 0.87) 64.8% (62.0, 67.7) 71.8% (68.1, 75.5) 56.3% (51.6, 60.9) 66.7% (63.0, 70.4) 62.1% (57.5, 66.7)

Validation cohort 0.85 (0.82, 0.87) 72.7% (78.1, 82.9) 80.0% (76.6, 83.5) 62.5% (58.0, 67.0) 72.7% (69.3, 76.3) 71.4% (66.7, 76.1)

Abbreviations: CI Confidence interval, AUC Area under receiver-operating characteristic curve, ACC Accuracy, SEN Sensitivity, SPE Specificity, PPV Positive predictive
value, NPV Negative predictive value

Kong et al. Cancer Imaging           (2019) 19:58 Page 5 of 10



relationship between the glucose metabolism and onco-
genic reprogramming [36], radiogenomic analysis based
on 18F-FDG-PET may reflect certain molecular pro-
cesses through imaging data, which is the theoretical
basis of our study. However, compared with anatomical
imaging modalities (e.g., CT and MRI), 18F-FDG-PET
has a relatively low spatial resolution, which limits the
stability and accuracy of certain features, especially in le-
sions with a relatively small volume [37].
Feature selection is a core step in radiomics studies

since most features have little relevance to the MGMT
promoter methylation status and may overwhelm the
distinguishable features if they cannot be effectively re-
duced. The number of final selected features also needs
to be balanced according to the patient cohort size be-
cause the addition of relevant features may increase per-
formance in the primary cohort but may also result in
overfitting of the radiomics signature. In our study, the
Wilcoxon rank-sum test removed 1543 of the 1561
radiomics features that were irrelevant to the MGMT
promoter methylation status, and logistic regression with

the L1 penalty diluted the weights, allowing selection of
the final 5 radiomics features to construct the radiomics
signature. Although the selected radiomics features are
not visually available to nuclear medicine physicians
(though they are mathematically easy to comprehend),
the radiomics signature did provide additional assistance
to physicians in the noninvasive molecular diagnosis of
glioma (Fig. 5).
Three signatures were built in our study to predict the

MGMT promoter methylation status. In addition to the
radiomics signature, the clinical signature was built with
visualized imaging features (e.g., metabolic pattern), and
the fusion signature was built with the 5 selected radio-
mics features and the metabolic pattern. However, the
radiomics signature demonstrated the best performance
and outweighed the clinical signature in both the primary
and validation cohorts, suggesting that the selected radio-
mics features are more reliable than the clinically assessed
imaging features in differentiating tumors based on the
MGMT promotor methylation status. Objective clinical
features (e.g., age and sex) and the most frequently used

Fig. 2 Receiver operating characteristic (ROC) curves of the prediction models. ROC curve of the clinical (a), radiomics (b), and fusion (c)
predictive models in both the primary and validation cohorts

Fig. 3 Box plots of the radiomics signature. Box plots of the radiomics signature in the primary (a) and validation cohorts (b). The signature
displayed a higher value for the patients with MGMT-methylated tumors in both cohorts
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quantitative imaging parameters (e.g., SUVmax and SUV-
mean) were excluded by the AIC when building the clin-
ical signature, although some of these features are the
only references for physicians in noninvasively evaluating
the MGMT promoter methylation status without radio-
mics. Moreover, the addition of the clinical feature (i.e.,

metabolic pattern) to the set of radiomics features de-
creased the AUC of the prediction model, indicating a po-
tential disturbance to the signature with the addition of
features with less relevance. Thus, clinical features may
not be integrated into the noninvasive radiomics evalu-
ation of the MGMT promoter methylation status.

Fig. 4 Clinical utility of the radiomics signature. The decision curve of the radiomics signature in the primary cohort (a). The x axis represented
the threshold probability, where the expected benefit of treatment as MGMT methylated is equal to the expected benefit of treatment as MGMT
unmethylated (the threshold probability varies from patient to patient). The y axis indicated the net benefit for the treatment which considered
the benefit of true positive and loss of false positive, and higher net benefit value indicates better model. The net benefit of the radiomics
signature is further compared with the default strategies, which we treat all patients as MGMT methylated (red line) or as MGMT unmethylated
(black line). The current prediction model outweigh both default strategies at any threshold probability, suggesting the clinical value of our
model at all circumstances. Kaplan-Meier curves revealed the prognosis-based groups stratified by the MGMT promoter methylation status and
the radiomics signature (b)

Fig. 5 Examples of using the radiomics signature to evaluate the MGMT promoter methylation status noninvasively. A 37/M was
histopathologically diagnosed with anaplastic astrocytoma with a methylated MGMT promoter (a), and a 44/M was histopathologically diagnosed
with anaplastic astrocytoma with an unmethylated MGMT promoter (b). Determination of the MGMT promoter methylation status is difficult
based on clinical and visually assessed imaging characteristics, but the radiomics signature demonstrated values of 0.84 (a) and 0.27 (b) in these
two patients and successfully predicted their MGMT status (the cutoff value of the radiomics signature was 0.50)
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The MGMT promoter has proven to be a strong prog-
nostic biomarker in glioma. The retrospective investiga-
tion of the EORTC 26981/22981 trial demonstrated that
the MGMT promoter methylation status is a favorable
independent prognostic biomarker in glioblastoma [5, 6];
the NOA-04 trial and the EORTC 26951/26053/22054
trial demonstrated its prognostic value in anaplastic gli-
oma regardless of the histopathological classification and
treatment strategy [3, 23, 24]. The recently reported
RTOG 0424 trial also suggests that the MGMT promo-
tor methylation status can predict the prognosis of pa-
tients with low-grade glioma treated with radiotherapy
and TMZ [4]. In accordance with previous evidences,
patients with MGMT promoter methylation displayed
significantly longer OS in our research. The clinical use
of a radiomics signature can be further supported if the
signature not only detects the MGMT promotor methy-
lation status noninvasively but also predicts the patients’
prognosis before treatment. In our study, the radiomics
signature could stratify patients into two significantly
different groups based on the prognosis, suggesting the
feasibility of using the radiomics signature to predict
prognosis in addition to distinguishing molecular fea-
tures. Moreover, the differences between the MGMT
promotor methylation status-predicted and radiomics
signature-predicted prognosis within each risk group
were nonsignificant, even with population discrepancies
within each risk group (e.g., a 20% difference in the
composition of the low-risk group), indicating that the
radiomics signature can serve to evaluate the prognosis
aside from the MGMT promoter methylation status.
Despite the results from the EORTC 26981/22981/
26053/22054 and NOA-04 trials suggesting that the
MGMT promoter methylation status is a predictive bio-
marker that can be used to evaluate whether a patient
will benefit from TMZ [3, 5, 6, 24], chemotherapy strat-
egies were not integrated into the prognosis analysis due
to their diversity and the retrospective nature of this
study.
The current study has several limitations. First, this

was a single-center, retrospective study with a limited
sample size, and the validation cohort is particularly re-
stricted. Further prospective, multicenter studies with
large patient cohorts may be essential for improving the
generality and performance of the prediction model.
Second, there may be a selection bias of the included pa-
tients since 18F-FDG-PET examination was not manda-
torily performed. The necessity of differential diagnosis
of the intracranial lesion or the evaluation of the extra-
cranial situation were the major consideration to suggest
an 18F-FDG-PET scan. Third, the radiomics model was
constructed without subclassification of the metabolic
pattern (i.e., solid or cystic) and therefore may not in-
clude distinguishable features for determining the

MGMT promoter methylation status in each subclassifi-
cation. Fourth, more than half of the patients did not
reach the endpoint of the prognosis analysis, which may
have introduced bias to the prognosis data. Further stud-
ies with long-term follow-up periods may be needed to
eliminate such imbalances. Finally, in addition to 18F-
FDG-PET data, multimodality imaging data (e.g., data
from MRI and PET with alternative tracers) may be fur-
ther integrated into the radiomics model for predicting
the MGMT promoter methylation status in glioma.

Conclusions
18F-FDG-PET-based radiomics is a promising method
for preoperatively evaluating the MGMT promoter
methylation status in glioma and has the potential to
guide the treatment and predict the prognosis of glioma
patients noninvasively.
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