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Abstract

Background: We retrospectively evaluated the capability of radiomic features to predict tumor growth in lung cancer
screening and compared the performance of multi-window radiomic features and single window radiomic features.

Methods: One hundred fifty lung nodules among 114 screen-detected, incident lung cancer patients from the National
Lung Screening Trial (NLST) were investigated. Volume double time (VDT) was calculated as the difference
between continuous two scans and used to define indolent and aggressive lung cancers. Lung nodules
were semi-automatically segmented using lung and mediastinal windows separately, and subtracting the
mediastinal window region from the lung window region generated the difference region. 364 radiomic
features were separately exacted from nodules using the lung window, the mediastinal window and the difference
region. Multivariable models were conducted to identify the most predictive features in predicting tumor growth.
Clinical information was also obtained from the database.

Results: Based on our definition, 26% of the cases were indolent lung cancer. The tumor growth pattern could be
predicted by radiomic models constructed using features obtained in the lung window, the difference region, and by
combining features obtained in both the lung window and difference regions with areas under the receiver
operator characteristic (AUROCs) of 0.799, 0.819, and 0.846, respectively. The multi-window feature model
showed better performance compared to single window features (P < 0.001). Incorporating clinical factors
into the multi-window feature models showed improvement, yielding an accuracy of 84.67% and AUROC of 0.855 for
distinguishing indolent from aggressive disease.

Conclusions: Multi-window CT based radiomics features are valuable predictors of indolent lung cancers and
out performed single CT window setting. Combining clinical information improved predicting performance.
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Background
Lung cancer is the leading cause of cancer-related deaths
among both men and women in the U.S. [1]. Screening
and early detection of high-risk individuals, based on
age and smoking history, can detect lung cancer at an
earlier, more treatable stage, and has been shown to
improve lung cancer survival rates [2, 3]. Specifically,
the National Lung Screening trial (NLST) demon-
strated a 20% reduction in lung cancer mortality
among high-risk individuals screened with low-dose
computerized tomography (LDCT) screening versus
those screened with standard chest X-ray [4]. Based
on the findings from the NLST, the U.S. Preventive
Services Task Force issued a recommendation for
annual lung cancer screening by LDCT [5].
Despite the mortality reduction benefit associated with

lung cancer screening, there are concerns that a subset
patients diagnosed with lung cancer in the screening
setting may be due to overdiagnosis of slow growing,
indolent cancer that may pose no threat and result in
overtreatment [2, 6–9]. In the NLST, prior studies
estimated that 18 to 22.5% of screen-detected cancers
would not become symptomatic in a patient’s lifetime
and would remain as indolent lung cancer [7]. Addition-
ally, there have been several other screening studies that
also estimated a range of indolent lung cancer rates to
be between 2 and 25% [8–10]. Although the methodolo-
gies and cohort sizes may vary, the existence of indolent
lung cancer in lung cancer screening poses an important
public health concern. Overdiagnosis of indolent lung
cancer results in additional, unnecessary screening,
increased costs, higher levels of radiation exposures,
undue stress for patients and their families, and
unnecessary morbidity that is sometimes associated with
overtreatment. Also, prior studies have shown that small
indeterminate lung nodules (< 4 mm), which did not
reach the criteria to be considered a positive screen in
the NLST, that develop into lung cancer in subsequent
screening intervals are associated with poorer survival
and higher lung cancer mortality compared to those
who had a baseline positive screen because of poten-
tially aggressive growth in a relatively short amount of
time (1 to 2 years) [11–13]. As CT imaging has an
important role in the longitudinal clinical management
of lung lesions, it is critical to find additional imaging-
based biomarkers that could distinguish biologically
indolent and aggressive lung cancer at an early stage of
development and optimize the scan interval to reduce
both overdiagnosis and underdiagnosis.
Radiomics has emerged as a powerful approach to

characterize and quantify pulmonary nodules. By provid-
ing information on nodule size, shape, and spatial and
temporal tumor heterogeneity, Radiomic features can be
applied for risk prediction, diagnostic discrimination and

disease progression [14–17]. Compared to conventional
radiology practices based on visual interpretation, radio-
mics is the process of converting standard-of-care
medical images into high-dimensional quantitative fea-
tures that are mineable either by conventional biostatis-
tical approaches or machine learning methods.
To date, few studies have been performed to investigate

the association between radiomics and growth rate of lung
nodules. Moreover, currently published radiomics work in
lung nodules has focused on images acquired with single
CT window, usually the lung window. Lee et al. [18] and
Sajin et al. [19] showed that the different parts of lung
nodules recognized by two CT windows (lung window
and mediastinal window) were associated with different
pathological components. In addition, some studies found
that the ratio of disappearance tumor area between the
mediastinal window setting and the lung window setting
is related to clinical-pathologic characteristics and tumor
aggressiveness and is a significant independent prognostic
determinant for small lung adenocarcinoma [20, 21]. The
motivation for our study comes from conventional radi-
ology, which commonly cycles between both windows to
improve diagnostic accuracy. Thus, we hypothesized that
highly heterogeneous tumor with different morphology of
lung cancer should be reflected with the use of different
CT windows settings and multi-window CT based quanti-
tative descriptors could provide an improved prospective
clinical predictor for lung cancer screening. Therefore, we
performed a radiomic analysis to identify image bio-
markers to reveal differences between these two windows
and to predict growth patterns of lung cancers in the lung
cancer screening setting.

Methods
Study population
We obtained the LDCT images and clinical information
for the NLST from the Cancer Data Access System
(CDAS) [22]. The NLST study design, patient enrollment
has have previously documented [4, 23, 24]. In brief, a
total of 53,454 participants who are high-risk of lung
cancer, with a smoking history of 30 pack years (former
smokers or those who quit with less than 15 years) and
55 years or older were randomly assigned to LDCT or
radiography examination and administered with baseline
and two annual follow-up scans. Exclusion criteria
included previous lung cancer history, undergoing chest
CT within 18months before enrollment and having an
unexplained weight loss of more than 6.8 kg in the pre-
ceding year. If the lung cancer diagnosis was confirmed,
the participants would be treated and left the following
screening examination. This retrospective study was
approved by the Institutional Review Board (IRB) at
University of South Florida (USF) and informed consent
was waived.
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The present study used subset of patients that has been
described in prior studies from our group [16, 25, 26].
Briefly, we identified 314 screen-detected, incident lung
cancer patients, who were not diagnosed with lung cancer
at baseline screening, but were diagnosed with lung cancer
at either the first follow-up screening interval or second
follow-up screening interval. These lung cancer cases were
derived from prior published nested case-control studies
described in [16, 26]. However, 200 cases were excluded
for the following reasons: complete volumetric image sets
were not available, the nodules at the baseline could not
be identified using the location information provided by
the publically available NLST data, and cases for which it
is difficult to exactly contour the tumor margin at any CT
window. As such, the final analytical cohort of incident
lung cancer patients included 114 patients with 150
lesions. Among the 114 patients, 36 patients had imaging
studies conducted for three time points (i.e., baseline, the
first follow–up. and the second follow-up). Self-reported
patient clinical data from the NLST used in this
analysis were age at randomization, sex, pack-years
smoked, family history of lung cancer, smoking status,
and history of COPD.

Volume-doubling time (VDT) and tumor growth patterns
Volume-doubling time (VDT) of a non-calcified nodule
was used as the criteria for classifying indolent lung
cancers versus aggressive lung cancers. Volumes were
calculated at the baseline screen and all available follow-
up screening intervals. And VDT for each nodule was
calculated using the fowling equation:

VDT ¼ ln2� Ti

ln V i=Voð Þ

Where Ti means interval time between two scans, V0

refers to the volume of the first scan, and Vi refers to
the volume of the second scan.
Nodules with a VDT more than 400 days were

classified as indolent/slow-growing lung cancer, and
nodules with a VDT less than 400 days were classified
as aggressive/fast-growing lung cancers.

Tumor segmentation and Radiomic feature extraction
All lung nodules were reviewed and segmented by two
clinical radiologists (H.L. and J.Q. with 15 and 12 years
of experience in thorax imaging, respectively), who was
aware of malignancy status but were blinded to clinical
information and growth status. Lesions were identified
and segmented using the Quantitative Imaging Decision
Support (QIDS)® Platform (HealthMyne, Madison, WI)
to delineate the tumor regions for this study. After iden-
tifying lesions and dragging the line along the longest
diameter, a 2D delineation preview is presented to the

user for editing or confirmation. Once confirmed the 2D
delineation, a 3D segmentation is automatically per-
formed, after which the boundaries can then be edited
and confirmed. Manual editing occurred in about 8% of
the nodule volumes because of pleural or fissure or
vessel attachment. Each nodule was segmented under
both standard lung window (window width 1500 Hu,
window level, − 400 Hu) and mediastinal window (window
width 400Hu, window level, 40Hu). All segmented images
were reviewed by 2 radiologists in consensus and any
discrepancies were discussed to reach consensus.
The two tumor masks (standard lung window mask

and mediastinal window mask) were imported into
MATLAB. The difference regions between the two
windows (Fig. 1), voxels that appear in lung window but
not the mediastinal window, were obtained and then
radiomic features were obtained from the two different
masks: standard lung window mask, difference region
mask. Radiomics features were extracted using an in-
house texture extractor implemented with MATLAB
2016b (MathWorks, Natick, USA). For each mask, 364
features were extracted, including 209 IBSI features
according as previously described [27, 28], 125 Laws
features and 30 wavelet features (Additional file 1:
Table S1).

Statistical analysis
To reduce the number of radiomic features, two separate
dimensionality reductions were conducted. First, the
Student’s t-test was performed for each feature compar-
ing indolent lung cancers versus aggressive tumor.
Statistically significant radiomic features (p-value < 0.05)
were included. Next, the area under the receiver operat-
ing characteristic (AUROC) was calculated for each
feature with Bootstrap resampling at 200X and features
with a mean AUROC > = 0.5 were included. Radiomic
features that were both statistically significant by the
Student’s t-test and possessing an AUROC > = 0.05 were
then tested for correlation using Pearson’s coefficient.
Among correlated features that had a Pearson’s coeffi-
cient > =0.8, the feature with the largest mean AUROC
was selected. The final features were then reduced using
a backward elimination logistic regression approach
(0.05 for entry and 0.10 for removal). Using this ap-
proach, three individual models were constructed using
the lung window features, difference region features, and
the combination of features derived from the lung win-
dow and the difference region. These were used to yield
3 distinct radiomics scores. Finally, we included patient
information (sex and self-reported history of COPD) to
the radiomics score based model to investigate the incre-
mental complementary value to improve the predictors.
All statistical tests were 2-sided. A p-value of less than
0.05 was considered statistically significant.
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Results
The patient demographic data are presented in Table 1.
There were totally 39 (26%) nodules classified as indo-
lent lung cancer (median VDT 583 days) compared to
111 (74%) nodules classified as aggressive (median VDT
148 days). There were 36 patients who had a baseline
screening and two follow-up screens, among of which
17 patients exhibited mixed growth pattern during the
two follow-up screening intervals. And 12 nodules from
the first to second follow-up were re-classified from
indolent to aggressive, while 5 nodules were re-classified
from aggressive to indolent cancer (Fig. 2).
In our dataset, the volume of the nodule in lung

window was in the range of 4.12~68.74 mm3, while the
volume of the nodule in mediastinal window was in the
range of 0~56.40 mm3. Volume was significantly differ-
ent between the two groups, but was excluded at the
final prediction model in the feature selection. There
were significant differences in sex and self-reported
COPD between indolent and aggressive lung cancers
(Table 1). Female patients were much more likely to
have indolent cancers (70.00% vs 31.17%) than male
patients (P = 0.006). Concerning history of COPD, indo-
lent lung cancers were more frequent in patients without
history of COPD compared with aggressive lung cancers
(P = 0.035). There were no differences in age (P = 0.196),
pack-years smoked (P = 0.704), family history of lung
cancer (P = 0.386), and smoking status (P = 0.309) between

indolent and aggressive lung cancers. The AUROC of
multivariable logistic regression model generated with
the clinical features alone was 0.742(95% CI, 0.66 to
0.83), with accuracy of 62.00%, specificity of 54.05%
and sensitivity of 84.62%.
The most informative radiomic features predicting lung

cancer growth pattern were obtained from lung window
and difference region between lung and mediastinal
windows. The multivariable logistic regression model
using radiomic features obtained in the difference region
had better predictive power than the features from any
single lung window (Table 2). The AUROC based on
difference region features was 0.820 (95% CI, 0.74 to 0.90),
with accuracy of 73.33%, specificity of 79.49% and sensitiv-
ity of 71.17%, while the AUROC based on single lung
window features was 0.800 (95% CI, 0.72 to 0.88), with
accuracy of 81.33%, specificity of 66.67% and sensitivity of
86.49%, When these two sets of features were combined,
the AUROC was increased to 0.845 (95% CI, 0.77 to 0.92),
with accuracy and sensitivity improved to 83.33 and
84.68%, respectively. Bootstrap re-sampling for internal
validation was conducted and the odds and perform-
ance statistics did not change to a significant extent,
with the AUROC based on difference region features,
lung window features and combined these two set-
tings features were 0.819 (95% CI, 0.742 to 0.90),
0.700 (95% CI, 0.72 to 0.88) and 0.846 (95% CI, 0.77
to 0.92), respectively (Table 2 and Fig. 3). We also

Fig. 1 Difference region between lung window and mediastinal window settings. a Axial CT show an irregular part-solid nodule in the right upper
lobe of lung in lung window. b The solid portion of the nodule showed in mediastinal window. c Based on two windows, the difference region can
be obtained.
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report the improved incremental predictive value with
the use of clinical information, which includes sex
and history of COPD. The nomogram models gener-
ated with combined clinical and radiomic features
(Fig. 3) were superior to the models created with
radiomic features alone or clinical characteristic alone
(Table 2 and Fig. 4).

Discussion
Using LDCT images and data from the NLST, we
extracted radiomic features and calculated VDTs using a
multi-window approach to identify features associated
with tumor growth. Overall, radiomic features extracted
from the combined window yielded a highly predictive
model to discriminate indolent from aggressive lung
cancers which yielded an AUROC of 0.85 and accuracy
of 84.67%. The model derived from the combined
window features resulted in better performance statistics
compared to the models derived from the lung window
and difference region only. Combining the most predict-
ive radiomics features and demographic risk factors into
a radiomics nomogram demonstrated the translation
implication for individualized tumor growth speed
estimation. As such, these data demonstrate that multi-
window CT based radiomics features are valuable in
improved personalization and precision screening and
management of lung cancer.

Now that LDCT imaging is approved for screening
and early detection of lung cancer, the implications of
identified high rates of indolent cancers is a real-life
concern. Bach [29] proposed a bipartite natural-history
model of lung cancer, which classifies lung cancer into
indolent versus aggressive as unique separate entities.
However, the exact definition of indolent lung cancer is
not uniform or consistent across studies. In NLST [7],
indolent lung cancers were defined as the surplus set of
cancers compared to standard chest radiography arm. In
the Pittsburgh Lung Screening Study (PluSS) [10],
Thalanayar et al. combined volume (VDT ≥ 400 days)
and PET (maximal standardization uptake ≤1) informa-
tion to define indolence and estimated a prevalence of
18.5%. Yankelevitz et al. [9] calculated the VDT (VDT ≥
400 days) based on the size measurement of recorded in
MLP (Mayo lung project) and MSK (the Memorial Sloan
Kettering Cancer Center trial) studies to evaluate the
indolent cases on chest radiography screening and 2 to
7% of indolence was identified. Using a similar defin-
ition, Lindell et al. [6] retrospectively evaluated the
indolence in the LDCT screening of 5 years and reported
a rate of 25%. In the Continuous Observation of
Smoking Subjects (COSMOS) study [8], Veronesi et al.
used VDT(VDT ≥ 400 days or 600 days) from volume to
define indolent lung cancer or slow-growing, and
suggested that cancer with a VDT of 400 days or more
could be overdiagnosed.

Table 1 Demographic characteristic of patients

Variable Aggressive cancer (n = 77) Indolent cancer (n = 20) Mixed cancer (n = 17) P

Age 0.196

Mean ± SD 65.29 ± 5.45 62.60 ± 4.71 65.18 ± 5.17

Pack years smoked 0.704

Mean ± SD 65.01 ± 25.83 62.40 ± 18.77 51.43 ± 16.96

Sex 0.006

Female 24 (31.17) 14(70.00) 9 (52.94)

Male 53 (68.83) 6(30.00) 8 (47.06)

Family history of lung cancer 0.386

Yes 20 (25.97) 6(30.00) 2 (11.76)

No 57 (74.03) 14(70.00) 15 (88.24)

Smoke status 0.309

Current 41 (53.25) 14(70.00) 8 (47.06)

Former 36 (46.75) 6(30.00) 9 (52.94)

History of COPD 0.035

Yes 16 (20.78) 0 (0) 1 (5.88)

No 61 (79.22) 20 (100) 16 (94.12)

Note: Data are presented as n, or n (%) Abbreviation: COPD chronic obstructive pulmonary disease
For the 77 patients with aggressive lung cancer, 16 of them have scans at 3 time points (baseline, the first follow up, the second follow up);For the 20 patients
with indolent lung cancer, 2 of them have scans at 3 time points (baseline, the first follow up, the second follow up);For the 17 patients with mixed lung cancer,
the nodules of 12 of them have indolent pattern at first but aggressive since the second scan, while the nodules of the rest 5 patients have aggressive pattern at
first but indolent since the second scan
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Compared to the VDT from 2-dimention analysis,
the VDT from 3-dimention has well reproducibility
[30]. Volume changes estimated from the 2-dimention
diameter may miss information of asymmetric growth
[31]. Moreover, VDT has also significant association
with lung cancer risk and lung cancer-specific mortal-
ity [8, 32]. Assessment of VDT was valuable in
reducing false positives [33]. So VDT is a reliable and
directive indicator of cancer aggressivity. In our
study, using VDT from volumetric analysis as criteria,
about 26% lesions were diagnosed as indolent lung
cancer with median VDT 583 days, which were simi-
lar with previous report [6–8]. Recognizing these lung
cancer with different growth pattern would be helpful
in defining the time interval of following up to
reduce the cost of screening and overtreatment for
indolent lesions, at the same time, avoiding delaying
the most better treatment opportunity for aggressive
lung cancer.

In our analysis we found that 47% of the nodules
exhibited inconsistent growth pattern between two time
periods (i.e., baseline to first follow-up versus first
follow-up to second follow-up), and 2 lesions became
smaller in volume at some time point. Similar findings
were also reported by previous studies [6, 34]. In
Lindell’s [6] five-year lung cancer screening study, he
reviewed the growth curves of 18 lung cancers with at
least four times CT scans and found the growth appear-
ance of lesions stratified with CT scan attenuation,
survival and size were vary. He also found 4 tumors
reduced during the follow up, including two bronchiolo-
alveolar carcinoma and two non bronchioloalveolar
carcinoma. Similarly, Leo [34] also reported a rare
regression of lung cancer without any intervention. Clas-
sically, lung cancer evolution was according to the expo-
nential growth model, but there is increasing evidence
shows that the natural history of lung malignant nodules
does not always fit this model. The complex interaction

Fig. 2 The lung cancers with mixed growth pattern during two round of follow up scan. a-c A nodule re-classified from indolent to aggressive. a Baseline
scan (T0). Axial CT images show an irregular nodule in right upper lobe. b The first follow up (T1), with the interval days of 406 days and VDT 5713 days. c
The second follow up (T2), with the interval days of 355 days and VDT 86 days. d-f A nodule re-classified from aggressive to indolent cancer. d Baseline
scan (T0). Axial CT images show an amorphous nodule in left upper lobe. e The first follow up (T1), with the interval days of 430 days and VDT 114 days. f
The second follow up (T2), with the interval days of 300 days and VDT 848 days
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Fig. 3 ROC curves for the prediction of tumor growth patterns obtained from 5000* bootstrap resampling. a Multivariable radiomics
models b Nomogram models combing the radiomic features and clinical characteristics

Fig. 4 a The multi-window CT based Radiomics nomogram created with lung-window radiomic features and difference region radiomic features
together. b The clinical nomogram created with clinical characteristics alone
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between stem cell and the microenvironment of the
tumor and the immune system play an important role in
tumor progression [35]. Our findings suggested the sta-
tus evaluation of lung cancer at one time point may not
always predict tumor growth and even mislead the lung
nodule management. As such, non-invasive imaging-
based predictors of tumor growth at different time point,
as presented in our analysis, should be helpful to assist
in identifying different growth pattern of lung cancer
and selecting personalized follow up interval during lung
cancer screening.
Although radiomics feature have been utilized in lung

cancer risk prediction and diagnosis [14–16], our current
analysis is the first to evaluate growth pattern of lung
cancers using multi-window CT radiomic features. With
the large amount of objective quantitative metrics
extracted either from entire tumor or a particular interest
of area within tumors, radiomics depict the intratumoral
heterogeneity, which subjective radiologic descriptors are
inadequate to capture, and are used to evaluate and moni-
tor tumor cell evolution over time. However, most current
quantitative metrics lack spatialness, especially for the
lung LDCT scan, and most radiomics analysis of lung
nodules are based on single lung window CT images. The
spatially explicit analysis of tumor regions is a potential
emerging key point of cancer imaging [36]. In the present
study, we proposed “window” as a practical and objective
way to define the lung tumor habitat spatially and extract
radiomic features from lung window, mediastinal window
and difference region between these two window settings
separately. Although the most informative features in
distinguishing indolent and aggressive lung cancer were
from the lung window and the difference region (data not
shown), the multi-window based difference region model
had the better performance statistics (Table 2). Moreover,
compared to the single lung window, the combined pre-
dictive model based on multi-window CT images resulted
in statistically better performance, with the AUROC
reached 0.85. The different CT window setting would play
different role in describing lung cancer physiology;
however, the relationships between quantitative imaging
and pathology remains poorly understood to date. Some
studies investigated that the solid portion of lung cancer
in the mediastinal window was associated with the adeno-
carcinoma invasiveness and using mediastinal window set-
ting criterion could improve the interobserver agreement
in classifying the subsolid lung nodule [18, 19, 37]. Okada
et al. [20] found the ratio of the tumor area of the
mediastinal window to that of the lung window was
prognostic. The 5-year survival was 48% in cases with
a ratio of 0 to 25%, 87% with a ratio of 26 to 50%,
97% with a ratio of 51 to 75%, and 100% with a ratio
of 76 to 100%. Moreover, the higher disappearance
ratio of two CT window settings also related to less

lymphatic, vascular vessel invasion, or nodal involve-
ment. Thus, the difference region between lung win-
dow and mediastinal window showed the potential to
identify the clinical-pathologic characteristics and ag-
gressiveness of lung cancer. Our results support this
conclusion. The mechanistic explanation for this observa-
tion is not known; however, the observation could be
attributed to that most of the discrepancy region between
two CT window settings are located in the peripheral of
tumor, where the active regions of tumor stem cell are
interacting with their surrounding microenvironment.
Future work is needed to elucidate these findings and
cumulatively these results provide further clues to explore
the role of window-based radimoics features in improved
personalization and precision medicine.
We also found that sex and history of COPD were

significantly different between indolent lung cancer and
aggressive lung cancer and that by including this infor-
mation with the radiomics nomogram (shown in Fig. 4)
improved prediction capabilities. As for sex-based
difference in growth speed, our results were consistent
with the following studies. Hasegawa et al. [38] revealed
the mean VDT of lung tumor was longer in women
(559 days for women and 387 days for men). Lindell et
al. [6] got the greater difference between the sexes (688
days for women and 234 days for men) and thought the
women had higher incidence of slow-growing or indo-
lent lung cancer for histology type. The link between
COPD and lung cancer has garnered substantial con-
cerning over the past decade years and many epidemio-
logical studies have consistently demonstrated an
increased incidence of lung cancer in patients with his-
tory of COPD [39] [40]. The association between CDPD
and tumor growth has little konwn, and our analyisis
revealed that the incidence of COPD was lower in indo-
lent lung cancer than that in agreesive lung cancer.
This finding support the COSMOS study [6], which in-
dicated that the slow-growing or indolent lung cancer
was more common in low-risk persons.
We acknowledge some limitations of this analysis.

First, the sample size was modest because of strict
inclusion criteria. Also, we did not stratify the lung
nodules according to the attenuation, because the
discrepancy between the two CT window settings had
already included the density information. Next, the
participants of NLST were from different U.S. medical
centers and the CT scanning parameters were not
consistent, however, which would be the superiority
for the extracted features to generalize to other
screening or incidentally-detected lung cancer cohort.
Although we performed backward-elimination boot-
strapping for internal validation of our final models,
further independent validation cohort across institu-
tions would be helpful to confirm these findings.
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Conclusions
In conclusion, we have found that the multi-window CT
based quantitative radiomic signatures showed the
potential to reveal and predict the tumor growth speed
non-invasively, and could identify the indolent subgroup
from aggressive lung cancer, thus, would be valuable for
precision lung cancer screening and longitude manage-
ment of lung cancer.

Additional file

Additional file 1: Table S1. 125 Laws features and 30 wavelet features.
(DOCX 40 kb)
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