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Abstract

Background: To assess if radiomics can differentiate benign and malignant subsolid lung nodules (SSNs) on
baseline or follow up chest CT examinations. If radiomics can differentiate between benign and malignant subsolid
lung nodules, the clinical implications are shorter follow up CT imaging and early recognition of lung
adenocarcinoma on imaging.

Materials and methods: The IRB approved retrospective study included 36 patients (mean age 69 ± 8 years; 5
males, 31 females) with 108 SSNs (31benign, 77 malignant) who underwent follow up chest CT for evaluation of
indeterminate SSN. All SSNs were identified on both baseline and follow up chest CT. DICOM CT images were
deidentified and exported into the open access 3D Slicer software (version 4.7) to obtain radiomic features. Logistic
regression analyses and receiver operating characteristic (ROC) curves for various quantitative parameters were
generated with SPSS statistical software.

Results: Only 2/92 radiomic features (cluster shade and surface volume ratio) enabled differentiation between malignant
and benign SSN on baseline chest CT (P = 0.01 and 0.03) with moderate accuracy [AUC 0.624 (0.505–0.743)]. On follow-up
CT, 52/92 radiomic features were significantly different between benign and malignant SSN (P: 0.04 - < 0.0001) with
improved accuracy [AUC: 0.708 (0.605–0.811), P = 0.04 - < 0.0001]. Radiomics of benign SSN were stable over time,
whereas 63/92 radiomic features of malignant SSNs changed significantly between the baseline and follow up chest CT
(P: 0.04 - < 0.0001).

Conclusions: Temporal changes in radiomic features of subsolid lung nodules favor malignant etiology over benign. The
change in radiomics features of subsolid lung nodules can allow shorter follow up CT imaging and early recognition of
lung adenocarcinoma on imaging. Radiomic features have limited application in differentiating benign and early
malignant SSN on baseline chest CT.
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Background
Pulmonary nodules (solid and subsolid) are ubiquitous,
and often, indeterminate findings on chest CT. The subso-
lid nodules (SSN) are further classified as pure ground-
glass (PGGN) and part-solid nodules (PSN). While most
small nodules are benign, some nodules are either

malignant or have the potential to become malignant un-
systematically. Given the high morbidity and mortality as-
sociated with lung cancer, differentiating benign nodules
from those with malignant potential is crucial.
The current standard of care for distinguishing benign

and malignant pulmonary nodules has disadvantages. Al-
though malignancy can be determined rapidly through
invasive biopsy procedures including open surgery, per-
cutaneous image-guided, and transbronchial biopsy.
Nonsurgical procedures are can have complications such
as pneumothorax and pulmonary hemorrhage. An open

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: sdigumarthy@mgh.harvard.edu
1Department of Radiology, Massachusetts General Hospital, 55 Fruit Street,
Boston, MA 02114, USA
3Department of Radiology, Massachusetts General Hospital, Harvard Medical
School, 75 Blossom Court, Suite 236, Boston, MA 02114, USA
Full list of author information is available at the end of the article

Digumarthy et al. Cancer Imaging           (2019) 19:36 
https://doi.org/10.1186/s40644-019-0223-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s40644-019-0223-7&domain=pdf
http://orcid.org/0000-0003-4041-6716
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:sdigumarthy@mgh.harvard.edu


lung biopsy can result in prolonged hospitalization and in-
creased morbidity [1–5]. Non-invasive differentiation in-
volves longitudinal chest CT examinations to establish
nodule stability and benignity. This approach entails a
protracted path to specific diagnosis, patient anxiety, and
healthcare costs, particularly for SSN, which can some-
times represent indolent malignancy, and require an ob-
servation period lasting up to 5 years or more. Thus, there
is a need for development and validation of an accurate,
noninvasive, and rapid method for characterizing SSN.
Radiomics has been proposed as a study of extracting

computerized, algorithm-based features to quantify pheno-
typic characteristics of lesions in medical images (CT, MR,
and PET). Prior studies have demonstrated that radiomics
can differentiate tumor grade, genetic mutation, hypoxia,
and angiogenesis [6–13]. Furthermore, estimation of tumor
heterogeneity (distribution of pixel values within the tumor)
with radiomics is a marker of tumor aggressiveness, treat-
ment response, and survival in oncologic patients [6–13].
Prior publications have demonstrated a role of radiomics
for distinguishing benign and malignant solid nodules in
lung cancer screening cohorts [14, 15]. However, there are
sparse data on the use of radiomics to predict the malignant
potential of SSN (PSN and PGGN) on the baseline and fol-
low up chest CT. We hypothesized that radiomics could
characterize SSN on baseline chest CT examinations.
Histopathology and serial follow-up chest CT were used as
a standard of reference to determine the etiology. We
assessed if radiomics can differentiate benign and malignant
SSN on initial or follow up chest CT examinations.

Materials and methods
Our study was compliant with the Health Insurance Port-
ability and Accountability Act (HIPAA). The institutional
review board (IRB) approved the retrospective study. We
have no financial disclosures relevant to this study.

Patient and SSN characteristics
The study included 36 adult patients (5 men; 31 women;
Table 1) who underwent serial chest CT examinations
for evaluation of one or more indeterminate SSN. All
patients had resection or biopsy of at least one SSN to
determine the final histology. There were 108 SSN in 36
patients included in the study [1 SSN (n = 2 patients), 2
SSN (n = 11 patients), ≥ 3 SSN (n = 23 patients)].
Our study included patients with SSN that did not

have specific features favoring malignancy such as prom-
inent solid component (> 5mm) or spiculations; these
patients underwent follow up chest CT to assess stability
or change in SSN. Nodules were deemed malignant if
there was histologic proof of malignancy, or a greater
than or equal to 25% increase in their size, a significant
subjective increase in attenuation, or development of a
solid component, over follow up chest CT examinations.

The benign SSN were confirmed at histology, or from their
stability over serial follow-up chest CT examinations. There
were 31 benign and 77 malignant SSN (all adenocarcin-
oma). The patients did not have malignancy other than
lung adenocarcinoma and were also negative for interstitial
lung disease or infection in the lungs by imaging.
All SSN were assessed twice, at the baseline (mean age

69 ± 8 years) and the final follow-up (mean age 73 ± 8
years) chest CT examinations. Mean time interval be-
tween baseline and final follow-up chest CT exams was
55 ± 32months. The mean sizes of SSN at baseline and
final follow-up chest CT were 13.2 ± 6mm and 13.3 ± 6
mm (benign SSN), and 12.7 ± 7mm and 21.3 ± 17mm
(malignant SSN) (Table 1).
The included patients were identified from a database

maintained by the medical thoracic oncology unit of our
institution.

Scan parameters
All chest CT examinations were performed on 16 or 64-
channel multi-detector-row CT scanners (GE Healthcare
or Siemens Healthineers). Scan parameters included
100–120 kV, 80–200 mA with automatic exposure con-
trol (Auto mA, GE; Care Dose4D, Siemens), 0.4–0.5 s
gantry rotation time, and 0.9:1 pitch. Transverse images
were reconstructed with 1.25–1.5 mm section thickness
with 50% overlap and with an intermediate (such as de-
tail kernel) soft tissue reconstruction kernel. All patients
underwent routine chest CT of the chest with IV con-
trast. No patients were scanned using low dose lung can-
cer screening or lung nodule follow up protocols. The
DICOM CT images were de-identified and exported off-
line from our PACS archive.

Radiomics
We used 3D slicer (Version 4.7), an open source soft-
ware package, to analyze the SSN on the exported
DICOM CT images. All SSN were assessed on both the
baseline and the final chest CT examinations. After

Table 1 Patient demographics and SSN characteristics

Number of patients 36

Male: Female 5:31

Number of SSNs (benign: malignant) 108 (31:77)

Patients with ≥3 SSNs 23 (36)

Mean age at baseline 69 ± 8 years

Mean age at follow-up 73 ± 8 years

Mean time intervals between baseline and
follow-up

55 ± 32 months

Average size of SSNs at baseline (benign:
malignant)

13.2 ± 6mm: 12.7 ± 7
mm

Average size of SSNs at follow-up (benign:
malignant)

13.3 ± 6mm: 21.3 ± 17
mm
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uploading the images into the 3D slicer, each SSN was
segmented manually with a paint function on both the
baseline and final chest CT images in lung window. We
avoided areas of cystic spaces containing air and artifacts
related to motion and beam hardening. After segmenting
SSN, Radiomics applet was applied for extracting 92
radiomics features for each nodule, including the first-
order statistics assess the distribution of CT numbers or
voxel values without considering relationship with the
neighboring values. These include mean, median, stand-
ard deviation, maximum, minimum, entropy (random-
ness), and skewness and kurtosis of the histogram of
values within the region of interest. The second-order or
the texture statistics provide a measure of intra-lesion
heterogeneity and assess relationships between the voxel
values within the region of interest. These include Gray-
Level Co-Occurrence Matrix (GLCM, such as homogen-
eity, dissimilarity, and cluster shade), Gray-Level Run-
Length Matrix (GLRLM, such as grey level non-uniformity,
run percentage, and run length non-uniformity), Gray Tone
Difference Matrix (GTDM, such as coarseness, contrast,
complexity and strength) and Grey Level Size Zone Matrix
(GLSZM, such as small area emphasis, large area emphasis,
and intensity variability). The feature data were exported to
Microsoft EXCEL (Microsoft Inc., Redmond, Washington).
A single study co-investigator made all measurements in
consultation with a fellowship-trained thoracic radiologist
(SD, 16 years of experience) to maintain consistency.
The first order statistics rely on the individual pixel

values and do not explore their relationships with other
pixels. Energy measures the magnitude of voxel values.
Large energy indicates the presence of high voxel inten-
sities in the region of interest (ROI). Entropy measures
the randomness in the voxel intensities and increases
with the number of microstates within the given data.
Kurtosis measures the peakedness of the distribution of
values; high kurtosis is linked to several outliers, while a
low value suggests lack of outliers. In a region with high
kurtosis, the pixel values are concentrated around the
data outliers instead of their average. Conversely, data
with low kurtosis are concentrated around their average.
Skewness measures the asymmetry in the distribution of
voxel intensities.
GLCM features consider spatial relationships between

two pixels. These are estimated from a matrix of single
grey values in the ROI, and provide a second-order joint
probability function in the given ROI. On the other
hand, GLRLM features look, at runs of pixels or a num-
ber of pixels of a given grey value in a sequence in a dir-
ection (length of a series of pixels with the same gray
level value). GLSZM features explore zones of 9-
connected pixels with a given grey value and quantify
gray level zones as regions of space with connected vox-
els that share the same gray level intensity [16, 17].

Statistical analysis
The data were analyzed using SPSS 21 statistical soft-
ware (IBM, Armonk, NY). Independent two-tailed Stu-
dent t-tests were used to compare the radiomic features
of PSN and PGGN at the baseline and final time points.
The p-value of 0.05 with a 95% confidence interval was
considered significant. Univariate and multivariate logis-
tic regression analyses were performed to determine sig-
nificant differences between the radiomic features of
benign and malignant SSN. Receiver operating charac-
teristic (ROC) curves were generated for various quanti-
tative parameters.

Results
Differentiating malignant and benign SSN at baseline CT
Only 2/92 radiomic features (cluster shade and surface
volume ratio) were significantly different between malig-
nant and benign SSN at the baseline on the independent
sample t-test (P = 0.01 and 0.03). The ROC analysis
showed that only one radiomic feature (surface-volume
ratio, AUC 0.624 (0.505–0.743), P = 0.044] was signifi-
cantly different between the benign and malignant SSN
at the baseline chest CT. The surface volume ratio was
also the only predictor for differentiating benign and
malignant SSN on univariate logistic regression analysis
(P = 0.006, Nagelkerke R2 = 0.06). The surface volume
ratio explained the 6% variance in separating benign and
malignant SSN and enabled correct classification of
71.0% of SSN on baseline chest CT.

Differentiating malignant and benign SSN on follow up CT
Fifty-two (52/92) radiomic features (such as entropy,
skewness, gray levels, diameter, volume, surface volume,
compactness, sphericity, mean HU values and standard
deviation) were significantly different for benign and ma-
lignant SSN on final follow up CT (P: 0.04 - < 0.0001).
ROC analyses demonstrated that 60/92 radiomic features
[AUC: 0.708 (0.605–0.811), P = 0.04 - < 0.0001] were sub-
stantially accurate for differentiating benign and malignant
SSN at the final follow up chest CT (Table 2, Fig. 1).
The univariate logistic regression analysis showed that

entropy was the strongest predictor of benignity and
malignancy on follow up CT (P = 0.006, Nagelkerke
R2 = 0.10). Entropy explained the 10% variance in differ-
entiating benign and malignant lesions on the final fol-
low up CT, and correctly classified 75.0% of benign and
malignant PSN and PGGN. Multivariate logistic regres-
sion analysis (Backward: Conditional) was also per-
formed with the addition of selective radiomic features
(including entropy, kurtosis, skewness, homogeneity, dis-
similarity, cluster shade, contrast, gray levels, diameter,
volume, surface volume, compactness, sphericity, mean
HU values and standard deviation) into the regression
model to obtain the final statistics. The logistic regression
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models were statistically significant (backward: conditional
P = 0.02 - < 0.0001). The backward conditional model cor-
rectly differentiated 82% PSN, and PGGN [sensitivity 90%
(CI 81–94%), specificity 61% (CI 42–78%)] as benign or
malignant on final follow up CT, slightly increasing the
sensitivity compared to the univariate model.

Changes in benign and malignant SSN over time
There were significant statistical differences in 63/92
radiomic features (such as entropy, skewness, gray levels,
diameter, volume, surface volume, compactness, spher-
icity, mean HU values and standard deviation) of malig-
nant SSN on the baseline compared to follow up CT
(P: 0.04 - < 0.0001) with a mean area under curve (AUC)
of 0.741 (0.664–0.818) (Fig. 2, 3a and b, Table 3). The

univariate logistic regression analysis demonstrated that
entropy was a significant predictor for differentiating be-
tween malignant PSN and PGGN at baseline versus final
follow up CT [P = 0.01 (1.511–4.475), Nagelkerke R2 =
0.11]. The entropy explained an 11% variance in separat-
ing malignant SSN at baseline and final time points and
correctly classified/identified 61.0% of malignant SSN at
baseline and final time points. The univariate logistic re-
gression for other radiomic features such as kurtosis was
not statistically significant: mean (P = 0.3).
None of the radiomic features were significantly

different for benign SSN at baseline versus final
time points on the independent sample t-test (P =
0.9) and ROC analysis [AUC: 0.566 (0.419–0.714),
P = 0.4].

Table 2 AUC values for radiomic features on follow-up CT for malignant vs. benign SSN

Test Result
Variable

Area Std.
Error

Asymptotic
Sig.

Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

Entropy 0.664 0.058 0.008 0.551 0.778

Skewness 0.356 0.057 0.020 0.245 0.467

Compactness 0.389 0.059 0.071 0.273 0.504

Sphericity 0.389 0.059 0.071 0.273 0.504

Mean 0.667 0.054 0.007 0.562 0.773

SD 0.651 0.062 0.014 0.530 0.773

Kurtosis 0.476 0.060 0.701 0.358 0.594

Homogeneity 0.461 0.062 0.530 0.340 0.583

Dissimilarity 0.578 0.064 0.205 0.452 0.704

Cluster Shade 0.357 0.053 0.020 0.252 0.461

Fig. 1 AUC graph of radiomic features on follow-up chest CT for malignant vs. benign SSNs
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Discussion
Management of SSN is challenging compared to the
solid pulmonary nodules of the same size. Several attri-
butes complicate the management of SSN including slow
growth, hypometabolism, and nonspecific biopsy find-
ings [18–21]. The current standard of care employ cri-
teria such as increases in size, development of a solid
component, or an increase in attenuation on follow up
chest CT to predict the malignant potential of SSN. Al-
though most radiomic features (90/92) were also unable
to differentiate benign and malignant SSN on baseline
chest CT, nodule shape (i.e. surface: volume ratio) and
cluster shade (a measure of skewness and uniformity of
the GLCM) had a moderate accuracy (AUC 0.505–
0.743) for characterizing SSN on baseline chest CT.
Conversely, on follow up chest CT, most radiomics (60/
92) had higher accuracy (AUC 0.605–0.811) for differen-
tiating benign and malignant SSN. First order statistic,
entropy, was the strongest predictor of benign and ma-
lignant etiology of the SSN on the follow chest CT.
Higher accuracy of radiomics on follow up chest CT
compared to the baseline exam was likely due to
changes in radiomics of malignant SSN and a lack of
change in patients with benign SSN noted in our study.
These results are consistent with other studies, but also

differ from other studies on the use of radiomics for charac-
terizing pulmonary nodules into benign and malignant cat-
egories [22–27]. Yang et al. have reported that morphologic
features such as lesion size, borders, and spiculated margins
can help differentiate benign and malignant PGGN [18].
Their study of 1934 subsolid nodules (including 94 benign

and 1840 malignant) reported that larger size, well-defined
borders, and spiculated margins favor malignant over be-
nign etiology for subsolid nodules [24]. We also found that
a shape radiomic feature (surface: volume ratio) helps in
the characterization of subsolid nodules on the baseline
and follow up chest CT. However, in our study, on baseline
CT examinations, other features such as size, attenuation,
and borders were unable to distinguish between benign and
malignant SSN; these features were only effective on final
follow up chest CT. These contradictory observations may
be related to different patient and nodule subtypes in our
study compared to Yang et al. [24], although it is likely that
our study employed quantitative radiomics versus subject-
ive assessment used in the prior study.
Hawkins et al. have reported that radiomics on base-

line chest CT have 80 and 79% accuracy in prediction of
malignant potential of pulmonary nodules within 1 and
2 years, respectively, using 23 stable features in a random
forests classifier [22]. In contradiction, we found that
only 2/92 features (cluster shade and surface: volume ra-
tio) enabled distinction between benign and malignant
nodules with moderate accuracy. The contradictory ob-
servations can be attributed to the fact that our study in-
cluded PSN and PGGN while Hawkins et al. [22]
assessed evaluated different pulmonary nodule subtypes
(77% or 338/437 nodules were solid in attenuation in
their study).
Yagi et al. evaluated CT radiomic features (such as

volume, mass, mean CT value, variance, skewness,
kurtosis, entropy, uniformity, and percentile CT num-
bers) of 115 non-solid nodules (≤ 3 cm diameter) to

Fig. 2 AUC graph of radiomic features for malignant SSNs at baseline CT vs. follow-up CT
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distinguish adenocarcinoma in situ (AIS), minimally in-
vasive adenocarcinoma (MIA), and invasive adenocarcin-
oma (IAC) [17]. AIS and MIA had significantly greater
skewness, kurtosis, and uniformity values compared with
IAC, and CT numbers (90th percentile) and entropy
could accurately distinguish AIS-MIA from IAC [17].
Han et al. [25], Chae et al. [26], and Hwang et al. [27]
have also assessed PGGN with these histologic subtypes
of adenocarcinoma using radiomics. We did not assess
these histologic types of adenocarcinoma.
The implication of our study is that most radiomic

features cannot differentiate between benign or malig-
nant SSN or predict malignant potential on baseline

chest CT. Cluster shade and surface: volume ratio (2/
92 radiomics) were significantly different between be-
nign and malignant SSN on baseline chest CT, but
their success is limited due to their modest accuracy.
On the follow-up chest CT, however, radiomics can
accurately differentiate between benign and malignant
SSN, particularly to address the most suspicious SSN.
This can help abbreviate the duration and frequency
of follow up required for an indeterminate subsolid
nodule. Currently, based on their size, SSN require to
follow up of up to 5 years to rule out malignancy and
document stability, as per the recommendations of
the Fleischner Society [1].

Fig. 3 a Radiomic analysis of a malignant SSN on baseline chest CT of a 62-year-old woman. b Radiomic analysis of a malignant SSN of the same
patient 3 years later. Radiomic features (e.g., entropy, kurtosis, mean, grey level variance) were substantially different on the follow-up CT
compared to the baseline CT
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Our study has limitations. We only assessed the radio-
mic features on the baseline, and at final follow up chest
CT examinations although the change from benignancy
to malignancy can occur at any time between the time
points. Although it may be valuable to extract radiomics
from all intervening chest CT between the baseline and
the final follow up exams, this was not possible in our
study due to the time-consuming and tedious process of
manual image export, uploading, and segmentation of all
chest CT examinations. Additionally, we extracted radio-
mic features from a single slice with SSN compared to
the entire volume, as it was challenging to parse and
separate the nodule from adjacent and passing blood
vessels and other anatomical structures. Though the
slice-based approach may have reduced accuracy, it is
important to note that prior studies have reported no
significant differences in the radiomic features for single
slice versus volumetric measurements [28–30]. Our
study included only routine chest CT and not low dose
CT that is used for lung cancer screening and therefore
the results may not be applied to these scans. Finally, pa-
tients in our study cohort had multiple pulmonary nod-
ules, and therefore the results may or may not apply to a
solitary pulmonary nodule.

Conclusions
In conclusion, a change in radiomic features over time
strongly favors the malignant potential of SSN. With
time, radiomic features become accurate in differentiat-
ing benign from malignant SSN due to phenotypical
changes in nodule morphology. Additionally, clusters or
groups of radiomic features have better sensitivity and
specificity for distinguishing benign and malignant SSN.
Unfortunately, radiomic features have limited application
in differentiating benign and malignant SSN on baseline
chest CT examinations, when nodules are indeterminate
by CT morphological features.
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