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Abstract

Objective: To identify imaging markers that reflect the epidermal growth factor receptor (EGFR) mutation status by
comparing computed tomography (CT) imaging-based histogram features between bone metastases with and
without EGFR mutation in patients with primary lung adenocarcinoma.

Materials and methods: This retrospective study included 57 patients, with pathologically confirmed bone
metastasis of primary lung adenocarcinoma. EGFR mutation status of bone metastases was confirmed by gene
detection. The CT imaging of the metastatic bone lesions which were obtained between June 2014 and December
2017 were collected and analyzed. A total of 42 CT imaging-based histogram features were automatically extracted.
Feature selection was conducted using Student’s t-test, Mann-Whitney U test, single-factor logistic regression
analysis and Spearman correlation analysis. A receiver operating characteristic (ROC) curve was plotted to compare
the effectiveness of features in distinguishing between EGFR(+) and EGFR(−) groups. DeLong’s test was used to
analyze the differences between the area under the curve (AUC) values.

Results: Three histogram features, namely range, skewness, and quantile 0.975 were significantly associated with
EGFR mutation status. After combining these three features and combining range and skewness, we obtained the
same AUC values, sensitivity and specificity. Meanwhile, the highest AUC value was achieved (AUC 0.783), which
also had a higher sensitivity (0.708) and specificity (0.788). The differences between AUC values of the three features
and their various combinations were statistically insignificant.

Conclusion: CT imaging-based histogram features of bone metastases with and without EGFR mutation in patients
with primary lung adenocarcinoma were identified, and they may contribute to diagnosis and prediction of EGFR
mutation status.
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Introduction
In recent years, molecular targeted therapy has been
widely accepted for lung adenocarcinoma, and the
epidermal growth factor receptor (EGFR) gene is a vital
target of lung adenocarcinoma. The selection of epider-
mal growth factor receptor tyrosine kinase inhibitors
(EGFR-TKIs) for treatment when EGFR mutation is
positive can prolong progression-free survival [1, 2]. In
the progression of lung adenocarcinoma, synchronous
and metachronous bone metastases are a more common
phenomenon, with a prevalence of 30–40% [3]. Recent
studies have shown a high degree of consistency in
EGFR mutation status between primary pulmonary
lesions and metastatic bone lesions [4]. Thus, when the
specimens of primary lesions are not available in patients
with advanced lung adenocarcinoma, the EGFR muta-
tion status of metastatic lesions can be analyzed to
Fig. 1 Flowchart for selecting patients
represent the primary lesions for guiding the treatment.
Typically, tissue specimens for EGFR mutation detection
are obtained by biopsy. However, the results of mutation
detection in biopsy samples are not accurate enough,
because when the proportion of cancerous cells in the
sample is low, the mutation ratios in metastatic lesions
are reduced and occasionally undetectable [5]. Also,
biopsy is associated with some complications such as
hematoma, and important vessel and nerve injuries [6].
In addition, when EGFR mutation is positive, synchron-
ous metastatic lesions may be enlarged in size or may
even increase in number in the patients receiving EGFR-
TKIs treatment [5]. Although this is a minor phenomenon,
it indicates that there may be heterogeneity between the
primary tumors and metastases. Moreover, there are fre-
quent changes in the gene mutation status of tumors in
metachronous metastases, such as breast cancer [7, 8].
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Although whether this change existed is still uncertain in
the metachronous bone metastases of lung adenocarcin-
oma, it suggests that we should pay attention to the possi-
bility of inconsistency. Therefore, we need a non-invasive
and accurate method to distinguish EGFR mutation status
of the metastatic lesions throughout the treatment process
of lung adenocarcinoma.
Recently, a number of studies have demonstrated that

radiomics features were significantly correlated with
potential gene expression patterns and they might provide
additional assistance for individualized treatment and effi-
cacy monitoring [9–11]. Studies have shown that the use
of first-order histogram features in radiomics features
based on computed tomography (CT) could predict EGFR
mutation status in non-small cell lung cancer (NSCLC)
[12]. However, the correlation between the CT histogram
features of bone metastases and their EGFR mutation sta-
tus suggesting that the CT histogram features are the bio-
markers of EGFR has not been well demonstrated.
Therefore, the purpose of our study was to identify the

imaging markers that reflect the EGFR mutation status
by comparing CT imaging-based histogram features
between bone metastases with and without EGFR
mutation in patients with primary lung adenocarcinoma.

Materials and methods
Patients
This retrospective study was approved by our institutional
review board, and the requirement for obtaining informed
consent was waived. Clinical and imaging information of
all patients were obtained through medical record system
and follow-up. We collected 149 patients with pathologic-
ally confirmed primary lung adenocarcinoma who were
Fig. 2 Flowchart for data preprocessing. We selected a left knee CT and a
located in the patella and rib, respectively. The voxel spacing of left knee C
mm3. By resampling, their voxel spacing were both 0.500*0.500*0.500mm3
confirmed to have synchronous or metachronous bone
metastasis by CT-guided biopsy pathological examination
from June 2014 to December 2017. By reviewing the clin-
ical and imaging data of these patients, we excluded the
patients who had not received the test for EGFR mutation
status in primary pulmonary lesions and metastatic bone
lesions (N = 75); who had not undergone CT examination
(N = 12); and who had undergone surgery, chemotherapy,
and radiation therapy for bone metastases before CT
examination (N = 2). In addition, patients with poor CT
image quality (N = 3) were also excluded. After the above-
mentioned screening, 57 patients were finally included in
the study (Fig. 1). We also collected data on the clinical
characteristics of each patient, including age at diagnosis,
gender, and smoking status.
EGFR mutation analysis
DNA was extracted from formalin-fixed paraffin-
embedded (FFPE) tumor sections using the QIAamp
DNA FFPE Tissue Kit (Qiagen). Mutations of EGFR
(exons 18, 19, 20 and 21) were analyzed by fluorescent
quantitative polymerase chain reaction (PCR) method.
CT protocols
All of the examinations were performed with GE MED-
ICAL SYSTEMS Discovery CT750 HD BASE (M) 64-
row multidetector CT scanner without contrast medium.
Scanning parameters were as follows: tube voltage, 120
kV; automatic tube current adjustment technology;
standard soft-tissue algorithm reconstruction; scanning
thickness, 1.25 mm; reconstruction interval, 1.25 mm;
rotation speed, 0.6 s/turn; and matrix, 512*512.
chest CT, and correspondingly the sites of tumor segmentation were
T and chest CT were 0.488*0.488*0.625 mm3 and 0.717*0.717*1.000
. Then denoising was used to get the images for segmentation



Fig. 3 Flowchart illustrating the histogram analysis in the study. a and b are axial and sagittal positions of original CT images obtained from a
case with bone metastases of lung adenocarcinoma. 3D ROIs were segmented manually and reconstructed, as shown in the figure. Histogram
features were generated automatically and selected by using the “MRMR” method
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Data preprocessing
All of the CT images obtained from these 57 patients
were plain CT scan images, including 1 case with CT of
the cervical vertebrae, 1 case with CT of the thoracic
vertebrae CT, 1 case with CT of the left knee, 2 cases
with CT of the lumbar vertebrae, and the remaining 52
cases with chest CT. The image quality and image noise
were different in different parts of the body, and their
raw data had different voxel spacing. Therefore, data
preprocessing was necessary to ensure that the imaging
features were calculated using the same specifications
[13]. First, all of the raw data were resampled to a com-
mon voxel spacing of 0.500*0.500*0.500 mm3 by using
linear interpolation algorithm to construct new data
points within the range of a discrete set of known data
points. Then for denoising, the Gaussian Filter was used
to remove the “unwanted signal”. “Variance” here we
chose 0.5. Finally, the images after data preprocessing
were used for tumor segmentation. We selected CT im-
ages of bone metastases from two different anatomical
sites as examples to show the data preprocessing (Fig. 2).
Table 1 Characteristics of patients in the EGFR(+) group and EGFR(−

Clinical data

Age /Mean ± SD

Gender /No. (percentage) Male

Female

Smoking status/No. (percentage) (+)#

(−) #

Footnotes: (1) N, number
(2) * significant difference (p < 0.05) between the two groups
(3) (+)# smoked, while (−)# never smoked
Tumor segmentation
Complete thin-layer CT images after data preprocessing
were stored in Digital Imaging and Communications in
Medicine (DICOM) format and uploaded to ITK-SNAP
software (http://www.itk-snap.org/) for three-dimensional
(3D) manual segmentation of the region of interest (ROI)
[14] with a window width of 1500 HU and a window level
of 400 HU. The largest bony metastatic lesion on CT was
chosen as ROI. The whole tumor was manually seg-
mented by a radiologist who did not have any knowledge
about the clinical information of patients, including the
cervical vertebrae, thoracic vertebrae, lumbar vertebrae,
clavicle, sternum, scapula, ribs, and patella, and then the
segmentation was checked by a senior radiologist.

Feature extraction and selection
The above images and ROIs were imported into A.K.
software (Artificial Intelligence Kit, A.K., GE Healthcare,
China), and 42 histogram features based on the individ-
ual pixel values of CT images were automatically
extracted.
) group

EGFR(+)
(N = 33)

EGFR(−)
(N = 24)

P value

59.00 ± 9.53 60.36 ± 7.03 0.104

15(45.45%) 16(66.67%) 0.112

18(54.55%) 8(33.33%)

6(18.18%) 15(62.50%) 0.001*

27(81.82%) 9(37.50%)

http://www.itk-snap.org/


Table 2 Forty-two histogram features in the EGFR(+) group and the EGFR(−) group are presented as median (25, 75%), respectively,
and a p value was derived on the basis of a statistically significant difference between each feature and EGFR mutation status

Features EGFR(+) EGFR(−) P value

Min Intensity −58.00 (− 212.00, 2.00) −16.00 (−67.00, 26.75) 0.106

Max Intensity 1073.00 (894.50, 1272.00) 772.50 (449.50, 1077.50) 0.002*

Median Intensity 369.35 (106.54, 565.63) 108.92 (70.63, 208.23) 0.002*

Mean Value 373.53 (140.51, 551.41) 131.17 (84.15, 227.16) 0.002*

Std Deviation 145.44 (118.97, 245.85) 88.09 (57.75, 155.43) 0.001*

Variance 21,151.80 (14,163.10, 60,442.60) 7766.17 (3340.58, 24,158.58) 0.001*

Volume Count 6047.00 (2462.00, 14,622.50) 4164.00 (1623.75, 9188.50) 0.245

Voxel Value Sum 1,840,000.00 (492,161.00, 7,150,000.00) 745,705.00 (199,724.75, 2,115,000.00) 0.013*

Range 1183.00 (888.00, 1401.00) 756.50 (478.25, 1113.25) 0.001*

RMS 389.84 (196.88, 594.39) 183.50 (100.74, 294.90) 0.001*

Mean Deviation −118.53 (− 296.44, 114.50) 123.84 (27.84, 170.85) 0.002*

Relative Deviation − 1058.43 (− 5577.42, 2235.28) 2337.26 (− 404.51, 8608.66) 0.009*

Skewness 0.40 (−0.19, 1.17) 1.22 (0.32, 2.32) 0.011*

Kurtosis 0.62 (−0.39, 2.18) 2.16 (−0.14, 7.21) 0.165

Uniformity 0.52 (0.24, 0.66) 0.32 (0.19, 0.63) 0.225

Histogram Energy 0.01 (0.01, 0.01) 0.01 (0.01, 0.02) 0.213

Histogram Entropy 7.01 (6.72, 7.32) 6.76 (6.22, 7.24) 0.137

Frequency Size 6046.00 (2461.00, 14,621.50) 4163.00 (1622.75, 9187.50) 0.245

Percentile 5 111.25 (30.33, 195.40) 34.94 (6.94, 104.10) 0.047*

Percentile 10 187.31 (41.50, 283.71) 40.98 (21.68, 125.22) 0.021*

Percentile 15 220.21 (49.21, 337.86) 45.55 (31.17, 139.97) 0.012*

Percentile 20 239.05 (56.38, 384.60) 49.92 (37.47, 151.24) 0.007*

Percentile 25 267.93 (62.89, 433.14) 53.39 (41.39, 160.71) 0.005*

Percentile 30 298.39 (68.42, 468.12) 56.89 (47.82, 170.64) 0.004*

Percentile 35 316.22 (75.99, 493.25) 60.53 (52.20, 179.06) 0.001*

Percentile 40 333.97 (82.54, 517.86) 70.52 (62.42, 187.81) 0.002*

Percentile 45 349.95 (93.92, 541.96) 91.71 (66.74, 198.01) 0.002*

Percentile 50 368.77 (107.44, 564.66) 109.48 (70.20, 208.48) 0.002*

Percentile 55 382.74 (123.39, 583.52) 119.17 (74.45, 221.36) 0.002*

Percentile 60 395.80 (140.10, 608.67) 130.12 (79.11, 240.573) 0.001*

Percentile 65 409.11 (161.26, 638.45) 140.19 (84.52, 265.378) 0.001*

Percentile 70 430.82 (183.03, 673.18) 153.89 (93.23, 296.70) 0.001*

Percentile 75 452.70 (207.13, 724.34) 168.34 (101.78, 333.79) 0.001*

Percentile 80 469.42 (235.15, 777.98) 186.77 (117.55, 376.72) 0.001*

Percentile 85 504.88 (270.93, 833.95) 211.65 (132.75, 433.35) 0.001*

Percentile 90 558.05 (320.99, 880.90) 272.33 (150.66, 498.35) 0.001*

Percentile 95 638.65 (403.52, 970.84) 331.95 (184.23, 534.20) 0.001*

Quantile 0.025 83.39 (7.50, 139.66) 27.60 (0.02, 83.78) 0.272

Quantile 0.25 267.93 (62.89, 433.14) 53.39 (41.39, 160.71) 0.005*

Quantile 0.5 368.77 (107.44, 564.66) 109.48 (70.20, 208.48) 0.002*

Quantile 0.75 452.70 (207.13, 724.34) 168.34 (101.78, 333.79) 0.001*

Quantile 0.975 704.95 (488.12, 1030.14) 395.74 (229.79, 606.97) 0.001*

Footnotes: (1) * significant difference (p < 0.05) between the two groups
(2) Abbreviations: RMS, root mean square; Std, standard
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Minimum redundancy maximum relevancy (MRMR)
feature selection [15] was implemented to select the opti-
mal features, which maximally distinguished between
EGFR positive expression and EGFR negative expression
while minimizing intra-feature correlation among these 42
features. Here, we performed the following two steps: In
the first step, Shapiro-Wilk test was used to test for nor-
mality of the features in each group. The features of nor-
mal distribution were tested for homogeneity of variance
by using Bartlett’s test. Then the features with homogen-
eity of variance were analyzed by Student’s t-test, and the
other features were analyzed by Mann-Whitney U test. All
of the features that were significantly different between
the two groups were substituted into single-factor logistic
regression analysis to determine the features that were
maximally relevant to the EGFR mutation status. A sig-
nificance level of 0.05 was set as the threshold. In the sec-
ond step, Spearman correlation analysis was performed to
eliminate redundancy. A correlation coefficient R > 0.9
was selected as the cutoff for strong relationships, in
which one of the two features was excluded to minimize
Fig. 4 The correlation heat map. Thirty-one features were maximally releva
correlation coefficient matrix, used to eliminate redundancy in the second
a positive correlation, while dark red indicates a negative correlation. The d
EGFR status confirmed by gene detection. |R| > 0.9 was considered to indic
features was eliminated. Finally, range, skewness, and quantile 0.975 remain
intra-feature correlation (Fig. 3). The feature selection
process was completed by using R Studio (Version
1.0.143–© 2009–2016 R Studio, Inc.).
Nine morphological features of the bony metastatic

lesion were also automatically extracted to show the
correlation with histogram features, including sphericity,
surface area, volume CC, volume MM, surface volume
ratio, maximum 3D diameter, compactness1, compact-
ness2, and spherical disproportion.
Statistical analysis
Clinical characteristics of the two groups were compared
using Student’s t-test and chi-square test, and p < 0.05 in-
dicated a significant difference. The receiver operating
characteristic (ROC) curve was constructed to assess the
discriminative performance of the histogram features. The
area under the curve (AUC), specificity, and sensitivity
were calculated, and the differences between the AUC
values were analyzed by DeLong’s test. All of the statistical
analyses were performed using SPSS 22.0 for Windows.
nt to the EGFR status based on the first selection step. Spearman
step, is shown in the heat map. For the color scale, dark blue indicates
eeper the color, the stronger the relationship. “Group” indicates the
ate a strong relationship with each other, in which one of the two
ed the representative features
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Results
Patient demographic characteristics
Fifty-seven patients were divided into two groups based
on the results of EGFR mutation status of metastatic
bone lesions; 33 patients showed EGFR positive expres-
sion and 24 patients showed EGFR negative expression.
On the basis of their primary pulmonary lesions, 32
patients showed EGFR positive expression and 25
patients showed EGFR negative expression. The clinical
characteristics of the two groups are shown in Table 1.
There was no statistically significant difference between
EGFR mutation status and gender or age (p ≥ 0.05).
There was a statistically significant difference between
EGFR mutation status and smoking status. The EGFR-
positive group had more non-smokers than the EGFR-
negative group.

Feature selection
From the 42 features listed in Table 2, we selected 34 fea-
tures that had a potential predictive ability on the basis of a
statistically significant difference between the two groups.
Then we entered these features one by one into the single-
factor logistic regression test, and 31 features were found to
be statistically significant (p < 0.05). After using Spearman
Fig. 5 Details of the representative histogram feature selection
correlation analysis to remove redundancy, which is shown
in the form of a heat map in Fig. 4, three features, namely,
range (p = 0.001), skewness (p = 0.011), and quantile 0.975
(p = 0.001), were the most representative and were sig-
nificantly correlated with the EGFR mutation status.
The meanings of the three independent features are
as follows: Range refers to the range of voxel inten-
sity values of the tumor, namely maximum-minimum;
skewness refers to the degree of asymmetry in the
distribution of pixel intensity values within the tumor;
and quantile 0.975 refers to the numerical point that
divides the probability distribution range of a random
variable into 0.975 equal parts. The details of the rep-
resentative histogram feature selection and the results
of the most representative features are shown in
Figs. 5 and 6. Figure 6 shows that the value of range
in the EGFR(+) group was 1183.00 (888.00, 1401.00);
and it was significantly higher than that in the
EGFR(−) group, which showed a value of 756.5
(478.25, 1113.25). The value of skewness in the
EGFR(+) group was 0.40 (− 0.19, 1.17), and it was sig-
nificantly lower than that in the EGFR(−) group,
which showed a value of 1.22 (0.32, 2.32). The value
of quantile 0.975 was 704.95 (488.12, 1030.14) in the



Fig. 6 Box plots show the relationship of CT imaging-based histogram features such as range (a), skewness (b) and quantile 0.975 (c) with the
EGFR mutation status
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EGFR(+) group, and it was significantly higher than
that in the EGFR(−) group, which showed a value of
395.74 (229.79, 606.97).
We also randomly selected a single respective case

from the EGFR(+) group and the EGFR(−) group as an
example and created the histogram shown in Fig. 7. As
seen in the figure, the value of range in the EGFR-
positive patient was significantly higher than that in the
EGFR-negative patient, while the value of skewness in
the EGFR-positive patient was lower than that in the
EGFR-negative patient. This finding was consistent with
the above results.
We used the form of a heat map to elaborate the

correlation between the three histogram features
identified and the morphological features, as shown
in the Additional file 1: Figure S1. There was no sta-
tistically significant correlation between the three
histogram features and the morphological features,
and there was no statistically significant correlation
between EGFR expression and the morphological
features. Finally, these nine morphological features
were excluded.

ROC curve analysis
We constructed ROC curves for these three features and
for the combination of these three features. The results
of ROC curve analysis are shown in Fig. 8. The AUC
value of range was 0.765 (95% confidence interval [CI]:
0.630–0.899), the AUC value of skewness was 0.699
(95% CI: 0.561–0.838), and the AUC value of quantile
0.975 was 0.749 (95% CI: 0.618–0.879). When these
three features were combined, the AUC value increased
to 0.783 (95% CI: 0.661–0.905). With respect to the
combination of these three features, the highest AUC
value was achieved. In addition, sensitivity and specificity
were calculated to evaluate the performance of the
values of these features (Table 3). The sensitivity and
specificity of these three features and the sensitivity and
specificity of their combination were 0.788 and 0.708,
0.417 and 0.909, 0.667 and 0.750, and 0.708 and 0.788,



Fig. 7 Representative histograms based on CT images. In the figure, the horizontal axis represents CT value, and the vertical axis represents the
probability of which the corresponding CT value appears. a The histogram of a case showing EGFR positive expression; a 59-year-old woman
diagnosed with primary lung adenocarcinoma that was confirmed as synchronous bone metastasis. The value of range was 1301.00. b The
histogram of a case showing EGFR negative expression; a 67-year-old man diagnosed with primary lung adenocarcinoma that was confirmed as
synchronous bone metastasis. The value of range was 312.00
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respectively. Furthermore, we also calculated the AUC,
sensitivity and specificity of the combination of every
two features, which were also shown in Table 3. The
AUC values of range and skewness, range and quantile
0.975, and skewness and quantile 0.975 were 0.783 (95%
CI: 0.661–0.905), 0.769 (95% CI: 0.641–0.897), and 0.750
(95% CI: 0.618–0.882), respectively. The sensitivity and
specificity were 0.708 and 0.788, 0.625 and 0.848, and
0.667 and 0.788, respectively. Compared with the com-
bination of the three features, the combination of range
and skewness had the same AUC value, sensitivity and
specificity. Finally, the differences between the AUC
values in the seven groups were analyzed in pairs, and
they were not statistically significant, as shown in the
Additional file 1: Table S1.

Discussion
In this study, we analyzed CT imaging-based histogram
features of bone metastases with and without EGFR mu-
tation in patients with primary lung adenocarcinoma.
We not only calculated AUC, sensitivity and specificity
of the three independent features extracted and various
combinations of these features, but also analyzed the dif-
ferences between the AUC values. Our results indicated
that histogram features may be helpful to diagnose and
predict EGFR mutation status of metastatic bone lesions
in patients with primary lung adenocarcinoma.
We finally obtained the following three independent

features: range, skewness, and quantile 0.975. Range ap-
proximately describes the degree of variation of pixel in-
tensity in the tumor and is related to intratumoral non-
uniformity levels [16]. The results of our study showed
that compared with bone metastases without EGFR mu-
tation, bone metastases with EGFR mutation tended to
have a higher range, i.e., the levels of intratumoral non-
uniformity were higher. The intratumoral non-
uniformity was similar to tumor heterogeneity. Previous
studies showed that the higher expression of EGFR indi-
cated higher tumor heterogeneity [17]. Thus, this rele-
vance provided evidence that range has a correlation
with EGFR mutation status. In our results, the sensitivity
of range was 0.788, which was the highest among the
three independent features. This indicated that the range
had more advantages in diagnosing EGFR-positive muta-
tion status. Another feature, skewness is used to describe
a skewed distribution. The results of our study indicated
that the EGFR-positive group had a lower skewness
value than the EGFR-negative group. This finding was
similar to that in previous studies on radiomics in geno-
variation of other tumors. For instance, in colorectal
cancer, skewness was negatively correlated with KRAS
mutation [18–20]. This might indicate that skewness
was relatively universal in the genovariation of tumors,
i.e., skewness might be a biomarker interrelated to the
genetic phenotype. The ROC curve constructed with
skewness had the highest specificity (0.909), which indi-
cated that it was more reliable for diagnosis of EGFR
negative expression. The previous research showed that
range and skewness had a good predictive ability for
EGFR mutation status (AUC 0.873, specificity 0.550, and
sensitivity 0.900) in NSCLC [12]. Thus, not only the
primary lung adenocarcinoma but also the bone metas-
tases, range and skewness have a good judgment ability
to EGFR mutation status. The last feature associated



Fig. 8 ROC curves and AUC values for the three features, and the ROC curve for the combination of the three features, including range (blue
line), quantile 0.975 (red line), skewness (green line), and for the combination of the three features (black line)
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with EGFR mutation was quantile 0.975, which describes
the central tendency of the voxel sample. When we
constructed the ROC curve by combining the three
features, the highest AUC value was obtained (AUC
0.783), which also had a higher sensitivity (0.708) and
specificity (0.788). However, after combining every two
features, we found that the AUC value, sensitivity and
specificity of combination of range and skewness were
Table 3 Results of ROC curve analysis

Feature Range Skewness Quantile 0.975

AUC 0.765 0.699 0.749

Threshold 0.501 0.496 0.417

Specificity 0.708 0.909 0.750

Sensitivity 0.788 0.417 0.667

95% CI Lower bound 0.630 0.561 0.618

Upper bound 0.899 0.838 0.879

Footnote: R, range; S, skewness; Q, quantile 0.975
the same as those of combination of the three features.
This indicated that range and skewness could comple-
ment each other and their combination was sufficient to
distinguish EGFR mutation positive or negative status,
while quantile 0.975 was not particularly significant. Thus,
quantile 0.975 may not be used for prediction of EGFR mu-
tation status of the bone metastases in patients with pri-
mary lung adenocarcinoma.
Combination
(R + S)

Combination
(R + Q)

Combination
(S + Q)

Combination
(R + S + Q)

0.783 0.769 0.750 0.783

0.460 0.531 0.519 0.462

0.788 0.848 0.788 0.788

0.708 0.625 0.667 0.708

0.661 0.641 0.618 0.661

0.905 0.897 0.882 0.905
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According to our conclusion, histogram features play an
important role in predicting EGFR mutation status in bone
metastases. However, can we trust radiomics and be
confident that radiomics can replace histology? Up to now,
many studies have shown that radiomics can be used for
histopathological classification, clinical stage, prediction of
gene phenotype, efficacy evaluation and prognosis of tu-
mors. For instance, radiomics could be used for predicting
histology subtype in meningiomas, lymph node metastases
in biliary tract cancer, and pathologic complete response
after neoadjuvant chemoradiation therapy in rectal cancer,
and their results were all medium and high predictive effi-
ciency and higher sensitivity and specificity [21–25]. These
studies indicate that the application prospects of radiomics
are high potential. But radiomics still has some shortcom-
ings, such as data non-standardization and single-center re-
search. These lead to a lack of studies of large-scale
randomized controlled trials in multi-center institutions.
However, we can’t deny the potential of radiomics as an al-
ternative to histology and ignore the clinical need for the
radiomics. Because histologic sections and biopsies cannot
solve the problem of tumor heterogeneity, which cannot re-
flect the information of whole tumor.
We acknowledge that our study has several limitations.

Firstly, the sample size was small. Although our results
were encouraging, experiments with a large sample size
are needed to verify the results in the future. Secondly, the
EGFR mutation status between primary pulmonary lesions
and metastatic lesions was not completely consistent in
one selected patient. In our study, it did not assess that
whether CT-imaging based histogram analysis could be
used to identify the EGFR mutation status of bone metas-
tases in patients with the converse EGFR mutation status
of primary lesions. We identified this problem. However,
since this type of cases are relatively rare, we need to
collect more such cases for further research.

Conclusion
In conclusion, this study suggested a correlation between
the CT imaging-based histogram features of bone metasta-
ses and their EGFR mutation status, and it also suggested
that the CT histogram features were the biomarkers of
EGFR. CT imaging-based histogram features might contrib-
ute to the diagnosis and prediction of EGFR mutation status
of bone metastases in patients with primary lung adenocar-
cinoma. Although the treatment of metastases with EGFR-
TKIs is still unclear, our study provides a new method for
treatment selection and efficacy evaluation.

Additional file

Additional file 1: Figure S1. The correlation heat map. For the color
scale, dark blue indicates a positive correlation, while dark red indicates a
negative correlation. The deeper the color, the stronger the relationship.
“Group” indicates the EGFR status confirmed by gene detection. |R| > 0.9
was considered to indicate a strong relationship with each other. The
color was lighter and all |R| values were no more than 0.7 between the
three histogram features and the nine morphological features. Table S1.
Results of DeLong’s test. (DOCX 232 kb)
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