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Abstract

Background: The purpose/aim of this study was to 1) use magnetic resonance diffusion tensor imaging (DTI), fibre
bundle/tract-based spatial statistics (TBSS) and machine learning methods to study changes in the white matter
(WM) structure and whole brain WM network in different periods of the nasopharyngeal carcinoma (NPC) patients
after radiotherapy (RT), 2) identify the most discriminating WM regions and WM connections as biomarkers of
radiation brain injury (RBI), and 3) supplement the understanding of the pathogenesis of RBI, which is useful for
early diagnosis in the clinic.

Methods: A DTI scan was performed in 77 patients and 67 normal controls. A fractional anisotropy map was
generated by DTIFit. TBSS was used to find the region where the FA differed between the case and control groups.
Each resulting FA value image is registered with each other to create an average FA value skeleton. Each resultant
FA skeleton image was connected to feature vectors, and features with significant differences were extracted and
classified using a support vector machine (SVM). Next, brain segmentation was performed on each subject’s DTI
image using automated anatomical labeling (AAL), and deterministic white matter fiber bundle tracking was
performed to generate symmetrical brain matrix, select the upper triangular component as a classification feature.
Two-sample t-test was used to extract the features with significant differences, then classified by SVM. Finally, we
adopted a permutation test and ROC curves to evaluate the reliability of the classifier.

Results: For FA, the accuracy of classification between the 0–6, 6–12 and > 12 months post-RT groups and the
control group was 84.5, 83.9 and 74.5%, respectively. In the case groups, the FA with discriminative ability was
reduced, mainly in the bilateral cerebellum and bilateral temporal lobe, with prolonged time, the damage was
aggravated. For WM connections, the SVM classifier classification recognition rates of the 0–6, 6–12 and > 12
months post-RT groups reached 82.5, 78.4 and 76.3%, respectively. The WM connections with discriminative ability
were reduced.

Conclusions: RBI is a disease involving whole brain WM network anomalies. These brain discriminating WM regions
and WM connection modes can supplement the understanding of RBI and be used as biomarkers for the early
clinical diagnosis of RBI.
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Background
Nasopharyngeal carcinoma (NPC) is a common cancer
with a high incidence among head and neck malignant
tumours in southern China [1]. Radical radiotherapy
(RT) is the first-choice treatment. However, RT may
cause radiation brain injury (RBI), which is the most ser-
ious complication [2]. RBI can be roughly divided into
three stages according to the time of occurrence: the
acute reaction period, the early delayed radiation period
and the late delayed radiation period. Injuries of the late
delayed radiation period are often irreversible [3].
RT-induced cognitive impairment significantly decreases
the quality of life of NPC patients [4–6]. RBI is most
prominent in cognition, memory, and emotion [7]. How
to detect RBI early, before conventional CT and MRI im-
ages appear abnormal, is the key problem to improve
the quality of life and prognosis of NPC patients.
Diffusion tensor imaging (DTI) is the only technology

that can evaluate the microstructural and morphological
changes of white matter (WM) fibres in vivo and has
been widely used in the study of the histomorphology
and pathology of the central nervous system (CNS) asso-
ciated with RT [8, 9]. In general, the damage to WM in
RBI is greater than that to grey matter (GM). The blood
supply of the WM is relatively scarce. After exposure,
the blood vessels are damaged, and ischaemic necrosis
easily occurs [10]. Therefore, most of the studies related
to RBI are focused on WM, for which decreased frac-
tional anisotropy (FA) values indicate loss of WM integ-
rity. FA was one of the most commonly DTI parameter,
which was used to quantify the degree of contrained
water diffusion along the axons and myelin. However,
the exact physiopathology of RBI is still unknown.
Previous studies are traditionally based on group-level

comparisons [11, 12]. Due to the different research tech-
niques and sample sizes, different studies often yield in-
consistent or even contrary results. In contrast, the
machine learning method has been used widely in brain
image analysis, can extract additional information and
stable patterns from brain image data, and can identify
or distinguish patients from normal persons at the indi-
vidual level, identifying biomarkers based on neuroimag-
ing data [13–15]. We hypothesized that based on the
whole brain DTI data, machine learning method could
separate NPC patients post-RT from normal persons at
the individual level and further explore the pathophysio-
logical mechanism of RBI. FA value and WM integrity
might be able to discriminate patients of different
month, and these FA value and WM integrity would be
selected as the features in classification. To the best of
our knowledge, the present study is the first to use DTI,
tract-based spatial statistics (TBSS) and machine learn-
ing methods to examine dynamic changes in the whole
brain WM microstructure and WM network situation,

selecting the most discriminating WM regions and WM
connections in NPC patients after RT.

Methods
Patients
The present study included 77 patients (54 males, 23 fe-
males; aged between 25 and 59 years; mean age, 45 years)
with pathologically confirmed NPC, and the normal
control group contained 67 cases. All patients
underwent fractionated RT for the first time with
three-dimensional conformal and intensity-modulated
techniques (total dose/fraction dose/exposures, 66–74
Gy/1.8–2.0 Gy/30–35 times). Prior to MRI examinations,
it was validated that the patients exhibited no intracra-
nial tumours or intracranial invasion. Patients with high
blood pressure, diabetes, heart disease, WM degener-
ation or vascular lesions were excluded.
Normal subjects constituted the control group, the

same exclusion criteria that applied to RT subjects were
applied to controls (i.e. hypertension, diabetes, heart dis-
ease, WM degeneration, vascular lesions). Traditionally,
according to time of completion of RT, neurological im-
pairment induced by RT can be described in terms of
acute injury (few days to weeks), early delayed injury (1
to 6 months) and late delayed injury (> 6 months) [16].
So in our study, post-RT patients were divided into three
groups according to the stage of RBI: acute reaction
period, early delayed radiation period and late delayed
radiation period: Group 1 (0–6 months post-RT, n = 30);
group 2 (> 6–12 months post-RT, n = 20); and group 3
(> 12months post-RT, n = 27). No statistically significant
differences were identified among the groups according
to age or sex. Demographic and clinical data are pre-
sented in Table 1. The present study was approved by
the Institutional Review Board and was conducted under
strict adherence to the Privacy Rules of The Health
Insurance Portability and Accountability Act. All indi-
viduals included were fully informed of the purpose,
methods and precautions of the trial, and written in-
formed consent was obtained from all participants.

Table 1 Demographic and clinical data

Group N Sex Age (year) Education
(year)Female Male

Control 67 19 48 44.28 ± 7.53 10.46 ± 2.74

I (0–6 m) 30 10 20 43.00 ± 9.27 10.40 ± 3.31

II (6–12 m) 20 5 15 46.40 ± 9.72 10.55 ± 3.30

III (> 12 m) 27 8 19 46.78 ± 8.96 9.93 ± 3.32

F or χ2 Value 0.290 1.91 1.70

P-value 0.590 0.170 0.196

Group I, II, III: NPC Patients examined 0~6, 6~12, and > 12months after
radiotherapy, respectively. The F or χ2 value and P-value are from ANOVA or
Pearson’s χ2 test
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Image acquisition
MRI data were acquired using a 3.0 T clinical scanner
with an eight-channel head coil (SIGNA EXCITE; GE
Healthcare, Chicago, IL, USA). The routine MRI brain
protocol included axial T1-weighted images [repetition
time (TR), 600 ms; echo time (TE), 15 ms], T2-weighted
images (TR, 5200 ms; TE, 140 ms) and T2-weighted fluid
attenuated inversion recovery (TR, 9000 ms; TE, 120 ms;
inversion recovery, 2100 ms). DTI scans were performed,
employing a single-shot echo-planar imaging sequence
and an array spatial sensitivity encoding technique with
the following parameters: TR, 12,000 ms; TE, 75.5 ms;
field of view (FOV), 24 × 24 cm; matrix, 128 × 128; slice
thickness, 3 mm (no inter-slice gap); number of excita-
tion, 1; and flip angle, 90°. Images were collected along
25 non-collinear diffusion gradient directions, with a
b-value of 1000 s/mm2 and one set of null images with a
b-value of 0 s/mm2.

Image analysis
Images obtained in DICOM format were first converted
to ANALYZE. The four-dimensional diffusion tensor
image was then aligned with the first volume using
McFlirt (FSL tool) (FMRIB analysis set; Oxford University,
Oxford, UK) to eliminate head motion errors. Then, the
eddy current-induced distortion of the aligned diffusion
tensor image was corrected using affine registration with
eddy current correction (FSL tool) (Oxford University).
After completing these preprocesses, the obtained images
were brain extracted using the FSL Brain Extraction Tool
(BET) (Oxford University) and diffusion tensor models
were fitted at each voxel using DTIFit (FMRIB Software
Library’s Diffusion Toolbox) (Oxford University) to gener-
ate images of FA. Using TBSS, voxel-wise cross-partici-
pant comparisons were made between the FA profile of
the NPC patient and the control participants to identify
discrete regions of WM abnormalities. First, the target
image was determined by aligning each participant’s FA
image with each of the other images to determine the
most representative theme. The target image was then
normalized to the MNI 152 standard space using affine
transformation. All other participants were then first
aligned to the target image and then aligned to a 1 × 1 × 1
mm MNI 152 space, and nonlinear registration was
achieved using FNIRT (FSL tool). This process created an
average FA skeleton that represents the centre of all re-
gions that were common to the group. Aligned FA data
(NPC patients and control participants) from all individual
participants were projected onto the FA skeleton, and the
resultant data were used for voxel classification.

Brain segmentation
Brain segmentation is an important step in network con-
struction. In this paper, the brain image is segmented by

using the automated anatomical labeling (AAL) method
to cover each subject’s DTI brain. This method divides
the brain into 116 small brain regions, including 90
brain regions and 26 brain regions of the cerebellum.
First, the T1 image is registered to the b0 image by lin-
ear registration of rotation and translation in the diffu-
sion tensor space. The registered T1 image is then
registered to the T1 image in the standard MNI space,
and the resulting transformation matrix is inverted, and
then the AAL template is transformed from the MNI
space to the diffusion tensor space using the inverse
matrix. This gives the AAL template for each participant.

White matter fiber bundle tracking
Deterministic white matter fiber bundle tracking using
the FACT algorithm in TrackVis software (http://www.
Trackvis.org).

Network construction
Combine the a and b results to generate a brain connec-
tion matrix. Each brain region is treated as a region of
interest (ROI), called a node, so node v can be described
as ROI(v). The connection between the two nodes
ROI(v) and ROI(u) is defined as the edge e = (v, u). We
define the weight w(e) of each edge e as the number of
fibers between ROI(v) and ROI(u). So for each partici-
pant, we get a symmetric 116 × 116 matrix. To remove
the diagonal component, we choose the upper triangular
component (6670 elements) as the classification feature.

Classification
For FA value, the FA skeleton image was first connected
to the feature vectors and combined into rows in the
large feature matrix. We extracted the FA skeleton
matrix from the large feature matrix, leaving a non-zero
feature. However, the remaining non-zero feature di-
mensions are still too high for direct classification, and
due to registration errors and image noise, the distin-
guishing features are masked by useless features. Redu-
cing the dimension of the feature space not only speeds
up the calculation, but also improves the classification
performance. And this study used a simple and effective
two-sample t-test to select the most discriminating
features.
In machine learning methods, feature selection is usu-

ally accompanied by feature reduction. As an unsuper-
vised nonlinear dimensionality reduction algorithm, local
linear embedding (LLE) can obtain low-dimensional em-
bedding while maintaining the intrinsic structure of data
due to its nonlinearity, geometric intuition and computa-
tional feasibility [17]. In this study, LLE was used to re-
duce the dimension of the feature space to a more
manageable level. In the classification section, we chose
support vector machines (SVMs) as our classification
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algorithm because they are flexible for overfitting, allow
for the extraction of feature weights, and are often used
for neuroimaging studies and often used for neuroimaging
studies [18].
For brain WM connections, we first used a

two-sample t-test to extract features with significant dif-
ferences between groups. Then, using local linear em-
bedding (LLE) for nonlinear feature extraction, the
feature dimension is reduced to a more controllable de-
gree. Finally, the support vector machine (SVM) is used
for classification.
We used the leave-one-out cross validation (LOOCV)

strategy to estimate the generalization rate (GR) of the
SVM classifier in this study due to the limited sample
size, assuming a total of N patients. In each fold of the
LOOCV, N-1 patients are selected to train the SVM
classifier, and the remaining patient is left to test the
classifier. In each fold of LOOCV, we used a two-sample
t-test to select the most significantly different D features
for N-1 trained patients first. Then, LLE was performed
to reduce the feature space dimension from D to d. The
results were used to train the SVM classifier, and the
remaining patient was used to evaluate classifier per-
formance by comparing the classification results to the
ground truth class label. Since there are N samples, the
classifier is trained and tested N times in the LOOCV
strategy. Based on the results of LOOCV, sensitivity
(SS), specificity (SC) and GR are used to quantify the
performance of the classifier. SS represents the propor-
tion of patients correctly classified, and SC represents
the proportion of controls that are correctly classified.
The overall proportion of correctly classified samples is
represented by GR. Using the SVM prediction score for
each participant as a threshold, a receiver operating fea-
ture (ROC) curve was constructed to further estimate
the performance of our classifier. In addition, GR was
used as a statistic to apply a permutation test to assess
the statistically significant level of the observed classifi-
cation accuracy. The class labels of the training data are
randomly permuted, and then cross-validate each group
of label-permuted data. The entire permutation process
was repeated 10,000 times.

Results
FA. The accuracy of classification between the 0–6, 6–12
and > 12months post-RT groups and the control group
was 84.5, 83.9 and 74.5%, respectively (Table 2). Compared
with the control group, in the 0–6months post-RT group,
the FA values in the brain regions with discriminative
ability were reduced, mainly in the bilateral cerebellum,
including Cerebelum_7b_L and Cerebelum_Crusl_R
(Johns Hopkins White Matter Tractography atlases, JHU:-
Cerebellum white matter). The FA values of the 6–12
months post-RT group in the brain regions with

discriminative ability were reduced, and the main area was
located in the left temporal lobe WM and the left cerebel-
lum, including Cerebelum_Crusl_L, Cerebelum_8_L (JHU:-
Cerebellum white matter), and Temporal_Mid_L
(JHU:Middle temporal white matter). The FA values of the
> 12months post-RT group in the brain regions with dis-
criminative ability were reduced, mainly in the bilateral tem-
poral lobe and cerebellum, including Cerebelum_Crusl_L,
Cerebelum_8_L(JHU:Cerebellum white matter), Temporal_-
Mid_L and Temporal _Pole_Sup_R (JHU:Middle temporal
white matter) (Figs. 1, 2, 3 4 and 5). With prolonged time after
RT, the damage was aggravated, and the number of brain
areas that had the most discriminative ability increased
gradually.
Whole brain WM connections. 0–6months post-RT

group and control group: the SVM classifier classifica-
tion recognition rate reached 82.5% (SS = 83.3%, SC = 83.3%;
P < 0.0001); 6–12months post-RT group and control group:
the SVM classifier classification recognition rate reached
78.4% (SS= 76.7%, SC= 76.7%; P< 0.0001); > 12months
post-RT group and control group: the SVM classifier
classification recognition rate reached 76.3% (SS = 80%,
SC = 80%; P < 0.0001) (Table 3). Compared with the
control group, in each post-RT group, the brain WM con-
nections (consistency) with discriminative ability were re-
duced (Figs. 6, 7 and 8).

Discussion
The present study is the first to use DTI-TBSS along
with a machine learning method to explore dynamic
changes in the whole brain WM microstructure and
WM network. The results showed that the WM
microstructure damage produced in NPC involved bi-
lateral temporal lobe and bilateral cerebellar multiple
brain regions, which had the ability to identify dis-
ease, and each of the three groups could be distin-
guished from the control group, achieving a higher
recognition rate.
The FA values of the most disease-discriminating brain

region were reduced, indicating that the WM integrity
had been damaged. Previous studies have demonstrated
that FA values are reduced significantly after brain RT
[8, 19–21], and DTI could serve as a potential biomarker
for the assessment of radiation-induced long-term white
matter injury [22]. Brain oedema, demyelination of nerve

Table 2 SVM classification results of FA

GR SS SC Permutation test

0–6 m vs. controls 84.5% 86.7% 83.6% P < 0.0001

6–12m vs. controls 83.9% 75% 86.6% P < 0.0001

> 12 m vs. controls 74.5% 63% 79.1% P < 0.0001

GR generalization rate, SS sensitivity, SC specificity, PT permutation test, 0–6 m
= post radiotherapy 0–6 months; 6–12 m = post radiotherapy 6–12months; >
12 m = post radiotherapy > 12months; vs versus
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fibres and destruction of myelin lead to a decrease in FA
[9]. These WM microstructural changes were complex and
dynamic. In the present study, with prolonged time after
RT, the damage was aggravated, and the number of brain
areas that had the most discriminative ability increased
gradually. The most discriminating WM regions which
underwent microstructural injury were mainly located in
the temporal lobe and bilateral cerebella, probably because

the regions were near the radiation fields and vulnerable to
radiation damage. These results were consistent with previ-
ous research [11, 12]. However, in contrast to those reports,
our results showed that the overall trend of radiation dam-
age increased with the duration of RT rather than showing
gradual recovery. At the early stage following RT, the injur-
ies occurred in the bilateral cerebellum, and there was no
significant damage in the temporal WM. Most likely, the

Fig. 1 The most discriminating voxels for the classification of 0–6 months post-RT versus control; the image is the cutaway view: a displayed on
the mean group fractional anisotropy (FA) map, the abnormal regions are shown in red; b FA map displayed in color (Red represents the left and
right direction, green represents the up and down direction, and blue represents the front and rear direction). The left side of the brain is on the
left side of the image. L = left, R = right

Fig. 2 The most discriminating voxels for the classification of 6–12months post-RT versus control; the image is the cutaway view: a displayed on
the mean group fractional anisotropy (FA) map, the abnormal regions are shown in red; b FA map displayed in color (Red represents the left and
right direction, green represents the up and down direction, and blue represents the front and rear direction). The left side of the brain is on the
left side of the image. L = left, R = right
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integrity of the temporal WM did not appear to cause
significant damage which could distinguish diseases
early, the integrity of the temporal WM did not ap-
peared significant damage, so that it did not have the
ability to distinguish diseases at individual level. And
the surrounding normal WM may have undergone a
compensatory phenomenon, which offset some of the
temporal WM damage. With the accumulation of
time, the WM damage in the temporal lobe and cere-
bella gradually became significant, the number of the
most discriminating WM regions increased, and the
damage was most likely difficult to reverse. This may
explain why radiation-induced encephalopathy has a
long incubation period of up to 5.4 years [23]. From
our results, we learned that WM injury is a gradual

and irreversible process: the longer the time, the
heavier the damage.
To a certain extent, the brain tissue could not repair

or compensate for these injuries, which would lead to
the occurrence of RBI. Previous studies showed that, in
addition to injuring the temporal lobe, radiation induced
extensive damage to the brain, including the frontal and
parietal lobes [24, 25]. In the present study, there was no
observation of WM damage in the extensive brain re-
gions, possibly because in the machine learning method,
the WM destruction in other brain regions did not
achieve a higher ability to differentiate and identify RBI
at the individual level. This is the advantage of the ma-
chine learning method relative to traditional statistical
methods at the group level. The method can eliminate

Fig. 3 The most discriminating voxels for the classification of > 12 months post-RT versus control; the image is the cutaway view: a displayed on
the mean group fractional anisotropy (FA) map, the abnormal regions are shown in red; b FA map displayed in color (Red represents the left and
right direction, green represents the up and down direction, and blue represents the front and rear direction). The left side of the brain is on the
left side of the image. L = left, R = right

Fig. 4 The permutation distribution of the estimate (repetition times: 10,000). a Post-RT 0–6 months versus the control classification. b Post-RT 6–
12months versus the control classification. c Post-RT > 12 months versus the control classification. X- and Y-labels represent the generalization
rate and occurrence number, respectively. GR0 is the generation rate obtained by the classifier trained on the correct class labels
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the interference caused by the differences in the sample
size and the statistical approaches and then extract the
most discriminating WM regions (which may be used as
biomarkers of the disease), thereby facilitating clinical
diagnosis and treatment. This research was the first time
to introduce machine learning method into RBI of NPC,
which is the innovation of this research. Most of the
brain WM regions that were feasible for disease differen-
tiation and identification appeared on the left side,
which may be related to the more frequent occurrence
of NPC on the left side in the present study.
According to reports in the literature, microscopic

damage in normal-appearing WM, as indexed by
lower FA, was related to poor intellectual outcome
[26] and cognitive disability [27]. The decline in vis-
ual spatial executive ability, memory, attention, cogni-
tive function, social function and auditory function

may be related to the decreased FA value in the tem-
poral gyrus WM [5, 28]. The decline in the ability to
regulate cognitive function and memory may be re-
lated to the decreased FA value in the cerebellar
hemisphere WM, and emotional disorders may be re-
lated to the decreased FA value in the WM of the
vermis of the cerebellum [29, 30] and may explain
the decline in NPC patient memory, visual space exe-
cution, hearing, naming function and significant anx-
iety and depression after RT [4, 7, 31]. The damage
to the WM in these brain regions may be the patho-
logical basis of neural network abnormalities, cogni-
tive decline, and affective disorders.
A previous study used resting-state functional mag-

netic resonance imaging (rs-fMRI) to perform a
short-term follow-up of 39 patients with a new diagnosis
of NPC, and found that the brain function network con-
nection pattern can be used as a biological marker to
monitor RBI [7]. According to the idea of structure de-
termining function, the most reliable way to assess brain
function is to understand the anatomical structure of the
brain and its potential brain circuits. Therefore, studying
the anatomical network between regions of WM can
supplement the understanding of pathophysiological
mechanism of RBI, and it is of great significance to ex-
plore the neurological basis of cognitive dysfunction
after RT. A study has also shown that the GM volume of
NPC is significantly impaired after RT [25], and we spec-
ulated that WM connections between GM are signifi-
cantly damaged. In this study, we used a machine
learning method and DTI to explore the changes in the
WM anatomic network in NPC patients after RT. The
first step was using a deterministic fibre tracing method
to reconstruct the fibre bundle and extracting the whole
brain WM network. In the second step, we used the ma-
chine learning method to extract the most discriminat-
ing WM connections and explored the dynamic changes
of the WM network in different periods following RT.
The present study was the first to regard the brain WM
connection pattern and its connection strength as a fea-
ture to classify NPC patients after RT, which is the
innovation of this investigation.
Our study found that the WM network of NPC pa-

tients in different periods after RT had changed dynam-
ically. Patients could be distinguished from normal
controls based on the whole brain WM connection and
achieved certain recognition rates, namely, 82.5, 78.4
and 76.3%, respectively. The strength of the most dis-
criminating connection was reduced. Our results sug-
gested that RBI can be regarded as an abnormal disease
of the WM structural network. Perhaps the destruction
of these structural networks and the reduction in their
connections can explain some of the patients’ clinical
manifestations and cognitive impairment.

Fig. 5 ROC curves of the SVM classifier. The orange broken line
corresponds to the ROC curve of the SVM classifier for 0–6 months
post-RT versus the control; the purple broken line, for 6–12 months
post-RT versus the control; and the sky-blue real line, for > 12
months post-RT versus the control. A yellow, pea green or purple
diamond on the curve corresponds to the classification rate, with
zero as the classification threshold. AUC = area under the curve. This
figure shows that our classifier had a better
classification performance

Table 3 SVM classification results of white matter connections

GR SS SC Permutation test

0–6 m vs. controls 82.5% 83.3% 82.1% P < 0.0001

6–12m vs. controls 78.4% 76.7% 79.1% P < 0.0001

> 12 m vs. controls 76.3% 80% 74.6% P < 0.0001

GR generalization rate, SS sensitivity, SC specificity, PT permutation test; 0–6 m
= 0–6 months post-RT; 6–12m = 6–12 months post-RT; > 12m = > 12months
post-RT; vs versus
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These results, to a certain extent, further demon-
strated that RBI is a disease related to the abnormal
WM network of the whole brain. The high classification
rate showed that a stable group difference between NPC
patients after RT and the control group could be de-
tected. The abnormal WM connection in these networks
may be the cause of neuropsychological cognitive

impairment in NPC patients. Within one year after RT,
the number of WM connections with a significant re-
duction increased with time, and after a year, the num-
ber was reduced. This finding indicated that after a
period of progressive aggravation, the destruction of the
WM connection in the whole brain can be gradually re-
stored, which may be related to the compensation and

Fig. 6 Region weights and distribution of the consensus WM connections. The classification for 0–6 (a), 6–12 (b) and > 12months (c) post-RT versus the
control is masked out. The thickness of the connections adjusts according to their connectivity strength. The connections are all decreased. The diameter
of the sphere represents the corresponding weight of the region of interest (ROI). The ROIs are colour-coded according to brain areas (Red = Frontal
cortex; Yellow=Occipital cortex; Green = Parietal cortex; Brown = Cerebellum; Purple = Limbic cortex; Sky blue = Temporal cortex). R = Right hemisphere,
L = Left hemisphere. Med =Medial; Mid =Middle; Ope =Opercular; Tria = Triangular; Sup = Superior; SFG = Superior frontal; MFG=Middle frontal;
IFG = Inferior frontal; ORB =Orbital frontal; TPO= Temporal pole; SMA= Supplementary motor area; SPG = Superior parietal; PoCG= Postcentral;
PreCG = Precentral; PCUN= Precuneus; DCG=Middle cingulate; INS = Insula; ACG =Anterior cingulum; PCG= Post cingulum; CAU= Caudate;
PUT = Putamen; STG = Superior temporal; MTG=Middle temporal; LING = Lingual; HIP = Hippocampus; ROL = Rolandic; VMS = Vermis; FFG = Fusiform;
Cer = Cerebellum; PHG= Parahippocampal; PAL = Pallidum
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self-repair of the whole brain network. Perhaps, new
brain WM connections are established. Brainstem dose
is almost always a concern in radiation planning, in our
analysis, the brainstem was included but changes in FA
values were not significant. Previous research showed
brainstem toxicity was reduced in patients treated with
static Intensity-modulated radiotherapy (IMRT) (0.07%)
and dynamic IMRT (0.08%) [32]. We speculated that
due to the application of IMRT, the brain stem has been

rarely damaged by radiation, which is consistent with
previous research. These findings might provide thera-
peutic guidance for clinicians in radiation planning.
There are some limitations to this study. First, all of our

NPC patients were treated with concurrent chemotherapy,
and there was a certain difference in the dosage of the
drug. How to exclude or quantify the effect of chemother-
apeutic drugs on brain WM needs further study. Second,
this study was a prospective cross-sectional study, and the
next step requires a larger cohort study to explore changes
in the dynamic effects of RT. Third, the present research
lacked behavioural data. Next, we need to improve the
mental and cognitive scale of subjects.

Conclusion
In this study, the results revealed that groups in different
periods post-RT and a control group can be distinguished
from each other and can achieve a high recognition rate.
The most serious and disease-discriminating brain regions
were mainly located in the bilateral temporal and cerebel-
lar WM, and the WM damage was gradually aggravated
with time. At the same time, RBI was a disease exhibiting
whole brain WM network anomalies. The strength of the
consistent ability to discriminate disease (WM connec-
tions) was reduced and may cause cognitive dysfunction.
Moreover, these brain discriminating WM regions and
WM connection modes can supplement the understand-
ing of RBI and can be used as biomarkers for the early
clinical diagnosis of RBI.
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figure shows that our classifier had a better
classification performance

Fig. 7 The permutation distribution of the estimate using an SVM with a Gaussian radial basis kernel function (repetition times: 10,000). a
Classification of 0–6 months post-RT versus controls. b Classification of 6–12months post-RT versus controls. c Classification of > 12months post-
RT versus controls. X- and Y-labels represent the generalization rate and occurrence number, respectively. GR0 is the generation rate obtained by
the classifier trained on the correct class labels. With the generalization rate as the statistic, this figure reveals that the classifier learned the
relationship between the data and the labels with a probability of being incorrect of 0.0001
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