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Abstract

Purpose: To identify clinically relevant magnetic resonance imaging (MRI) features of different types of metastatic
brain lesions, including standard anatomical, diffusion weighted imaging (DWI) and dynamic susceptibility contrast
(DSC) perfusion MRI.

Methods: MRI imaging was retrospectively assessed on one hundred and fourteen (N = 114) brain metastases
including breast (n = 27), non-small cell lung cancer (NSCLC, n = 43) and ‘other’ primary tumors (n = 44). Based on
114 patient’s MRI scans, a total of 346 individual contrast enhancing tumors were manually segmented. In addition
to tumor volume, apparent diffusion coefficients (ADC) and relative cerebral blood volume (rCBV) measurements,
an independent component analysis (ICA) was performed with raw DSC data in order to assess arterio-venous
components and the volume of overlap (AVOL) relative to tumor volume, as well as time to peak (TTP) of T2* signal
from each component.

Results: Results suggests non-breast or non-NSCLC (‘other’) tumors had higher volume compare to breast and
NSCLC patients (p = 0.0056 and p = 0.0003, respectively). No differences in median ADC or rCBV were observed
across tumor types; however, breast and NSCLC tumors had a significantly higher “arterial” proportion of the tumor
volume as indicated by ICA (p = 0.0062 and p = 0.0018, respectively), while a higher “venous” proportion were
prominent in breast tumors compared with NSCLC (p = 0.0027) and ‘other’ lesions (p = 0.0011). The AVOL
component was positively related to rCBV in all groups, but no correlation was found for arterial and venous
components with respect to rCBV values. Median time to peak of arterial and venous components were 8.4 s and
12.6 s, respectively (p < 0.0001). No difference was found in arterial or venous TTP across groups.

Conclusions: Advanced ICA-derived component analysis demonstrates perfusion differences between metastatic
brain tumor types that were not observable with classical ADC and rCBV measurements. These results highlight the
complex relationship between brain tumor vasculature characteristics and the site of primary tumor diagnosis.
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Introduction
Brain metastases are the most common type of intra-
cranial neoplasm [1, 2]. The majority of brain metas-
tases originate from primary cancers in the lung (40–
50%), breast (15–25%) or melanoma (5–20%) [3, 4].
The brain metastatic cascade is schematized by tumor
cell dissociation from the host organ, intravasation
into the vasculature, migration along the vessels and
adhesion to the capillary bed, and lastly extravasation
into the brain tissue through blood brain barrier
(BBB) [5]. Recent studies speculate that tumor can
grow at a clinically detectable stage with vessel
co-option [6], a non-angiogenic mechanism [7]. Such
processes have been reported in non-small cell lung
tumors (NSCLC) [8] and melanoma [9]. Interestingly,
Valiente et al., recently demonstrated that metastatic
tumors can survive and grow while adhering to capil-
laries [10], causing resistance to anti-angiogenic
treatments [11]. Evidence also suggests significant
differences in vascular density between breast and
melanoma brain metastases that may be influenced by
genetic factors, including the expression of CD105, a
transforming growth factor (TGF)-beta receptor
endoglin [12].
In clinical practice, patients were often screened with

brain lesion and some potential unknown primary tumor
located in the body. A robust and highly specific diagno-
sis is very important, however, conventional imaging ap-
proaches encounter limited specificity to differentiate
and predict primary lesions. MRI has been long time
used to assess tumor localization and burden. Moreover,
specific functional features could be extracted by using
DWI and DSC-MRI [13]. The DWI derived measure-
ment of ADC has been shown to correlate with tissue
cellularity in brain lesions [14] as well as in meta-
static brain lesions [15]. From DSC-MRI, rCBV can
be estimated and used as a marker for hypervasculari-
zation, as studies have suggested rCBV may reflect
vascular morphometry [16]. Additionally, arterial, ven-
ous and overlap (AVOL) components present within
tumor volume could be extracted from ICA, based on
DSC signal [17]. As another surrogate assessment of
vascularization reflecting differences in the dispersion
or tortuosity of the vessels, TTP may be extracted
from normalized R2* signal for both arterial and
venous ICA components.
In this study, we investigated the potential differ-

ences in tumor burden, water diffusivity and perfusion
features and that between different subtypes of sec-
ondary brain lesions. We additionally hypothesized
possible differences between metastatic lesions, espe-
cially in the proportion of each vascular component
(arterial, venous or overlap), present within contrast
enhancing region.

Methods
Patient characteristics
Inclusion criteria were based on the known primary
tumor location; specific secondary organ (brain paren-
chyma) and available brain MRI study including anatom-
ical, diffusion- and perfusion-weighted images acquired
prior to radiation treatment. After the discovery and
histopathological diagnosis of primary neoplasm (breast,
lung, etc), a whole body FDG-PET/CT was performed as
part of active clinical surveillance to identify the pres-
ence of metastatic disease. If a metabolically active
region was detected within the brain, it was assumed to
be due to the primary tumor type, and a subsequent
high-resolution brain MRI was performed. From August
2014 to December 2016, 114 patients (71 female and 43
male) were selected for the current retrospective study,
including various primary tumors: breast (n = 27, female
= 100%) lung adenocarcinoma (non-small cell lung
cancer (NSCLC), n = 43, female = 51%) and ‘other’ (n =
44, female = 50%). The ‘other’ group, or non-breast and
non-NSCLC tumors, consisted of different primary
tumors (hepatocellular carcinoma, renal cell carcinoma,
clear cell carcinoma-kidney, etc). More details of pa-
tient’s primary tumor location are reported for the
former group (Additional file 1: Table S1). The median
age of patents at time of imaging was breast = 56 years,
NSCLC = 65 years and ‘other’ = 62.5 years.

MRI acquisition
All images were acquired on either 1.5 T or 3 T scanners.
T1-weighted images were acquired before and after con-
trast agent injection (gadopentetate-dimeglumine,
Gd-DTPA, Magnevist) with repetition time (TR)/echo
time (TE) ranging from 400 to 2100 ms/1.18–1.53 ms;
slice thickness = 1–1.5 mm; number of slice = 118–192.
DWI were acquired before injection of contrast with TR/
TE = 4–13 s/65–124ms; flip angle = 90 degree; slice thick-
ness = 2-5mm; matrix size = 128 × 128 and number of
slices ranged 24–86. DSC perfusion MR images were ac-
quired during contrast agent bolus with TR/TE = 1.1–2.4 s/
17–45ms; slice thickness = 4-5mm; inter-slice gap = 4–6.5
mm; matrix size = 128 × 128; flip angle = 350, 600 or 900;
number of repetitions = 50–120 times for a total number
of slices = 6–48. Gd-DTPA was power-injected through a
venous catheter at standardized pre-load of 0.025mmol/kg
followed by a bolus dose of 0.075mmol/kg.

Post-processing
Contrast-enhanced digital T1 subtraction maps (delta
T1 maps) were performed as previously described
[18]. First, pre- and post-contrast T1-weighted images
were registered and intensity normalized (NIMH MEG
Core, Bethesda, MD; kurage.nimh.nih.gov/meglab/Med/
3dNormalize) followed by voxel-by-voxel subtraction,
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resulting in ΔT1 maps highlighting areas of active tumor
burden. ADC maps (expressed in μm2/ms) were com-
puted offline using a mono-exponential model [19] using
clinically available b values (either 0 and 1000s/mm2 or 0,
500 and 1000s/mm2).
Two types of analyses were performed with DSC

perfusion data: 1) traditional estimation of rCBV and 2)
estimation of vascular volume fraction of arterial and
venous vasculature identified through ICA, using the
MELODIC toolbox (FMRIB library).
For traditional perfusion measures, dynamic time

series data were first motion corrected (MCFLIRT,
FMRIB library). Next, rCBV maps were calculated
using a bi-directional contrast agent leakage correc-
tion algorithm to model contrast flux into and out of
the vasculature [20, 21]. Lastly, normalized rCBV
(expressed in a.u.) was computed by dividing the
rCBV map by the average rCBV value in within a 5
mm sphere in contralateral, normal appearing white
matter (NAWM).
In order to estimate the volume fraction of “arterial”

and “venous” vasculature within the tumor, independent
component analyses (ICA) was applied to the dynamic
time series data following motion correction [22]. Next,
intensity normalization was performed over time frames
and a single-session ICA model with 4 components was
opted; arterial, venous [17] and structured noise for last
two components (motion-related, physiological artifacts,
sawtooth pattern, etc) [23] with a statistical threshold of
p < 0.5 to preserve voxels with temporal patterns signifi-
cantly different from noise. Results were visually
inspected and arterial and venous components were
selected according to presence of Circle of Willis (ar-
terial) and major draining sinuses (venous). In ques-
tionable datasets the temporal arrival of the contrast
bolus was considered, with components having the
fastest arrival categorized as “arterial” and those with
slower, delayed bolus arrival categorized as “venous”.
A single investigator with ~ 5 years of experience ini-
tially categorized the components, which was con-
firmed by a second investigator with > 10 years of
experience.
Z-score normalized maps were binarized (only posi-

tive voxels) to create an overlap mask that combine
both arterial and venous mixed (AVOL map) regions
(Fig. 1), similar to those described by LaViolette et al.
[17]. Since ICA is highly dependent of bolus temporal
evolution, we hypothesized existence of potential dif-
ferences in TTP between arterial or venous compo-
nents across the different tumor types. TTP has been
calculated from the start of the inflection point of T2*
signal. As we extracted TTP from normalized T2*
after ICA processing, values are reported for each
patient and not individual lesions.

Image registration
Image registration was performed using FMRIB Software
Library (FSL) linear image registration toolbox (FLIRT,
http://www.fmrib.ox.ac.uk/fsl/; FSLVersion 5.3). Perfusion
and diffusion images were registered to high-resolution
T1-weighted post-contrast image using a 12-degree of free-
dom transformation with a mutual-information cost
function and a tri-linear interpolation.

Regions of interest
Contrast-enhancing tumors (CET) from ΔT1 maps were
segmented using a semi-automatic procedure as previ-
ously described [24] with Analysis of Functional NeuroI-
mages (AFNI) software (NIMH Scientific and Statistical
Computing Core; Bethesda, MD, USA). Briefly, a large
ROI was drawn over contrast-enhancing regions on the
ΔT1 maps in each contiguous slice, covering the entire
lesion (including any macroscopic necrosis). Then, an
intensity threshold was manually chosen to segment the
CET (without necrosis). Each lesion was then labeled
and volumes reported in microliters (μl) for each subse-
quent lesion.

Statistical analysis
Median with interquartile range was reported for each
lesion including tumor volume, ADC, rCBV, arterial,
venous and overlap components. The normality of each
distribution was evaluated using Shapiro-Wilk test.
Pairwise tests of Wilcoxon-Mann-Whitney method were
used to assess differences between groups for estimated
variables. A p < 0.05 was considered to indicate a statisti-
cally significant result. Linear regression between rCBV
maps and ICA-derived components were performed. Re-
ceiver-operating characteristic (ROC) analyses was per-
formed to test the accuracy of differentiation between
tumor types. The accuracy was estimates with area
under the curve (AUC) as well as optimal cut-off value.
We reported as well specificity and sensitivity of each
parameter. All the statistics were performed using JMP
Pro13 (SAS®).

Results
A total of 346 lesions were examined with a median
frequency of 2 lesions per patient. We analyzed 72
individual lesions from breast metastases (group range
1–3/subject), 159 from NSCLC (group range 1–4/sub-
ject) and 115 from ‘other’ group (group range 1–3/
subject). Figure 2 shows anatomical (T1w pre- and
post-contrast images, T2w-FLAIR and ΔT1 maps),
diffusion (ADC) and perfusion-derived (rCBV and
AVOL) images for representative patients of each
group (Breast (Fig. 2a), NSCLC (Fig. 2b) and ‘other’
(Fig. 2c), respectively). All the patients clearly demon-
strated blood brain barrier (BBB) disruption and
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contrast enhancement in all lesions. Qualitative ana-
lyses based on visual inspection revealed surrounding
edema seen on T2w-FLAIR images, present on both
patients in Fig. 2a and c and appeared in 83.9% of all
lesions examined (respectively 85.1% for Breast, 86.0%
for NSCLC and 80.9% for ‘other’ group). The ADC
maps show higher values within tumor area (CET, red
overlay), along with increased rCBV compared to
NAWM (Fig. 2a, b and d). Within the CET regions, a
variety of volume fractions of arterio-venous compo-
nents were identified from ICA. Within areas of vaso-
genic edema characterized by T2 hyperintensity, we
observed characteristic increased ADC and hypovas-
cularity (low rCBV), particularly when compared to
CET regions. The areas of T2 hyperintensity sur-
rounding regions of contrast enhancement did not
show any detectable arterio-venous components from
ICA analysis (no AVOL observed).

Quantification of tumor volume, ADC and rCBV metrics
within enhancing lesions
Quantitatively, CET volumes in the non-breast,
non-NSCLC ‘other’ group (median volume = 627.5 μl)
were significantly larger than NSCLC (Fig. 3a; median
volume = 236.0 μl, p = 0.0056) and primary breast cancer
(median volume = 300.0 μl, p = 0.0003). No significant
difference in median CET ADC or median CET rCBV
was observed between groups (Fig. 3b and C, respect-
ively). Statistical reports are available under each
corresponding graph and numerical values (median and
interquartile range) are reported per group and measure-
ment (Table 1).

Differences of AVOL components within enhancing
lesions
The proportion of the CET with a statistically significant
“arterial” ICA component (red, Fig. 4) was significantly

Fig. 1 Independent component analysis (ICA) of dynamic susceptibility contrast (DSC-MRI). Left - Temporal evolution of normalized T2* from
arterial and venous component. Right – ICA derived Z-score probability maps (p < 0.5) for respective components for one representative patient.
Results are overlaid on anatomical T1-weigthed post-contrast image. Sagittal plane representing selected slices (from left to right) to cover
polygon of Willis, sagittal sinus and tumor region. Binarized arterio-venous (positive Z-score values) and overlap mask (AVOL) are overlaid to the
T1-weigthed post-contrast image
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larger in breast metastases (median = 27.33%) and NSCLC
metastases (median = 32.57%) compared with the
non-breast, non-NSCLC ‘other’ group (median = 15.12%,
p = 0.0062 and p = 0.0018, respectively). The proportion of
the tumor with a significant “venous” component (blue)
for breast brain metastases (median = 54.39%) was signifi-
cantly larger when compared with NSCLC (median =
24.18%, p = 0.0027) and ‘other’ brain metastases (median
= 24.11%, p = 0.0011). No difference was observed
between groups for mixed proportion of vascular compo-
nents (orange). While the breast and NSCLC brain metas-
tases did not differ significantly in terms of the volume
fraction of arterial, venous and overlap ICA components,

the ‘other’ group contained a significant proportion of
tumor with “overlap” components (mixture of arterial and
venous components) (median = 48.66%) compared to
purely arterial (p < 0.0001) or venous (p = 0.0141) compo-
nents. Numerical values (median and range) are reported
for each ICA component and group (Table 1).

Temporal patterns of DSC-MRI (time to peak) in
metastatic brain lesions
Results suggested no difference in TTP within arterial
component, with a TTP = 7.74 s for breast (range: 7.21–
9.85 s), 8.72 s for NSCLC (range: 7.60–10.50s) and 8.95 s
for ‘other’ tumors (range: 6.60–11.71 s). Similarly, no

Fig. 2 Multiparametric MRI images in patients with secondary brain metastasis from a) breast, b) NSCLC and c) clear cell kidney carcinoma. Pre-
and post-contrast T1-weigthed, T2-weighted FLAIR, T1 subtraction (ΔT1 map), ADC, normalized rCBV and arterio-venous overlap (AVOL) maps for
each representative patient. Inhomogeneous tumor lesions were defined and overlaid on ΔT1 map excluding central necrotic areas (red
rectangles). T2-weighted FLAIR shows peri-enhancing edema on both breast and clear cell kidney carcinoma cases. ADC maps shows reduced
diffusion values within solid component of the tumor (contrast enhancement) and increased diffusion in edematous component. This former
region is characterized by hypoperfused blood volume (low rCBV) while solid component is mostly hyperperfused. AVOL maps are heterogeneous for
both arterial and venous components while in clear cell kidney carcinoma case, tumor region is predominated by overlap map
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differences in TTP were observed within the venous com-
ponent across groups, with TTP = 12.60s for breast (range:
11.40–14.01 s), 12.67 s for NSCLC (range: 11.38–14.70s)
and 12.65 s for ‘other’ group (range: 10.89–15.23 s).

Prediction of lesion type with ROC curve analysis
We next determined by ROC analyses whether tumor
types could be differentiated from each other (Table 2).
Between breast and ‘other’ group, the highest accuracy
was reached with venous component (AUC = 0.698,
cut-off value > 68.69%). The venous component has
shown the best discrimination between breast and
NSCLC (AUC = 0.687, cut-off value > 46.46%). Between
NSCLC and ‘other’, arterial component has shown the
highest accuracy (AUC = 0.658, cut-off value < 29.26%).
Similarly, arterial component was the most robust

parameter to differentiate breast and NSCLC (pooled)
vs. ‘other’ (AUC = 0.666, cut-off value > 20.20%).

Correlation between DSC-MRI metrics; rCBV and AVOL
maps
Lastly, we explored whether there was an inherent
relationship between rCBV and ICA-derived measure-
ments within CET. The percentage of overlap and its
relationship with rCBV revealed highest linear correl-
ation for breast: rCBV = 0.019*Arterial+ 1.551 (r = 0.68,
p = 0.0002), NSCLC: rCBV = 0.013*Arterial+ 2.710 (r =
0.70, p < 0.0001) and ‘other’ group: rCBV = 0.021*Arterial
+ 1.945 (r = 0.58, p < 0.0001) (Fig. 5b). No significant lin-
ear correlation was observed when comparing rCBV to
arterial (Fig. 5a) or venous components (Fig. 5c).
Together, this suggests measures of CET proportions
exhibiting pure arterial and venous components with

Fig. 3 Quantitative measures of a) tumor volume (μL), b) ADC (μm2/ms) and c) rCBV (a.u.) for all three groups. Statistical analyses (p values)
between groups are reported from each pair Nonparametric-Wilcoxon test. Bold text represents statistical differences (bottom), especially for
tumor volume between ‘Other’ vs. Breast (p = 0.0056) and NSCLC groups (p = 0.0003)

Table 1 Patient demographics and MRI features of different metastatic brain lesions

Patients, N Age Brain Lesion, N Tumor Volume [μL] ADC [μm2/ms] rCBV(normalized to NAWM, a.u.)

Pathology Breast 27 56.0 (44–64) 72 (1–3) 300.0 (118.7–790.5) 1.03 (0.91–1.26) 2.14 (1.42–3.68)

NSCLC 43 65.0 (56–71) 159 (1–4) 236.0 (104.0–1120.0) 1.12 (0.82–1.34) 2.11 (1.09–3.41)

Other 44 62.5 (55–72) 115 (1–3) 627.53 (182.0–2121.0) 1.10 (0.88–1.42) 2.0 (1.31–3.02)

Total 114 60 (53.7–69.5) 346 (1–3) 318.52 (119.7–1340.9) 1.09 (0.91–1.34) 2.03 (1.23–3.39)

Arterial component (%) Overlap (%) Venous component (%)

Pathology Breast 27.33 (16.76–64.77) 54.13 (18.51–77.53) 54.39 (24.25–89.85)

NSCLC 32.57 (9.01–69.04) 35.08 (11.61–59.93) 24.18 (11.33–44.60)

Other 15.12 (4.31–33.94) 42.52 (20.99–64.14) 24.11 (7.88–50.82)

Total 23.84 (6.98–50.42) 40.86 (17.11–65.84) 29.21 (10.63–57.51)

Patient number, age, number of brain lesion, tumor volume (μL), ADC (μm2/ms), normalized rCBV (a.u.) for each subtype of brain metastasis as well as combined
cohort. Independent component analysis (ICA) derived arterial, overlap and venous components are shown for each subgroup and combined cohort. Median and
interquartile ranges are reported
BOLD rows in the table represent total characteristics for the entire patient cohort examined in the current study
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ICA are unique compared with traditional rCBV mea-
sures, whereas rCBV is most closely related to regions of
the tumor exhibiting a mixture of arterial and venous
components.

Discussion
Although conventional MRI is often used for diagnosis
and response assessment of metastatic brain tumors,
MRI has traditionally been nonspecific and unable to
reliably differentiate different subtypes of secondary
metastatic brain lesions. While the identification of spe-
cific types of brain metastases via MRI are of limited
clinical value given the primary cancer has likely already
been diagnosed at the time of brain metastases identifi-
cation, the specific vascular characteristics in brain me-
tastases unique to particular primary tumor types may
be of important biological significance. For example, our
study suggests the proportion of CET with “venous-like”
perfusion hemodynamics is higher in breast cancer
compared with other tumor types, while the proportion
of CET with “arterial-like” perfusion hemodynamics are

substantially lower in non-breast, non-NSCLC ‘other’
tumor types. Although speculative, these differences may
be explained partially by eloquent preclinical studies
demonstrating differential metastatic tumor types prefer-
ring either vascular cooption or angiogenesis [25]. Spe-
cifically, breast and melanoma brain metastases have
been shown to exhibit mostly vascular cooption for
further continuous tumor growth [25, 26], while lung
carcinoma is thought to initiate neovascularization
through pro-angiogenic factors [26]. Thus, perfusion
signatures that are unique to specific types of primary
lesions may reflect different aspects of the tumor micro-
environment or biological behavior that could be further
explored or therapeutically exploited.
Results from the current study also suggest CET size

of individual brain metastases from breast and NSCLC
are significantly smaller than those from non-breast,
non-NSCLC ‘other’ tumors. This volumes difference
may also be explained by the asymptomatic screening of
secondary metastatic brain lesions, detected at various
stages of tumorogenesis. It is also important to note that

Fig. 4 Results of arterio-venous and overlap maps from each subsequent brain metastatic group. Red, yellow and blue box plots representing
respectively arterial, overlap and venous components. Statistical analyses are reported in bottom part for each component, across groups (left), as
well as within each group and between components (right)
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we segmented and considered each lesion as single
entity, whereas other studies analyzing the product or
totality of enhancing lesions on a per patient basis. Thus,
our results appear to underestimate tumor volumes
reported in the literature (e.g. NSCLC) [27].
Previous investigations using diffusion and perfusion

have primarily focused on glioma grading and differ-
ences between metastatic lesions versus primary brain
lesions [28] and very few attempted to study brain
metastases from differing primary tumor types [29–31].
We found no differences in ADC values between brain
metastases from differing primary tumor types. These

results were consistent with other studies, where ADC
values in the current study did not differ from those
previously reported in NSCLC and melanoma [32] and
between lung and breast cancers [33]. Another study has
found lower ADC values only in central nervous system
lymphomas compared to lung, breast, melanoma, sar-
coma, etc. [29]. However no significant differences were
found between other tumor types, which suggest that
DWI derived ADC maps, are not robust to differentiate
metastatic brain lesions. In our clinic, standard perfu-
sion measurements, including normalized rCBV, were
not different between metastatic brain tumors from
different primary tumor types. Our measurements of
rCBV were consistent with previous reports, showing
elevated rCBV (> 1.5) within solid part of the tumor
in brain metastases [34]. In accord with our study,
only moderate differences in rCBV have been reported
among secondary brain lesions (e.g. lymphoma, breast and
lung cancer metastasized to the brain) [35, 36]. In
addition, Huang et al. [30], reported similar median values
of normalized rCBV for the NSCLC metastases, while
in breast metastases, they found more elevated rCBV
values. However, the former study collects only
sub-regional active tumor parts, combining 3-5 mm
ROI’s and no leakage correction was performed on
DSC signal, which is controversial and may have
resulted in erroneous results compared with our
approach.
Our findings of ICA are similar to untreated glioblast-

oma patients for arterial and AVOL components, but
the venous component averaged ~ 29% in our study,
which was lower than the 38% reported by LaViolette et
al. [17]. We also confirmed that ICA-derived regions of
overlap were volumetrically bigger (~ 40%) than arterial
and venous tumor proportions.
During this current retrospectively study, we were not

able to control or homogenize the acquisition parame-
ters, especially slice thickness, between T1-, diffusion-,
and perfusion-weighted images. Since we were not able
to perfectly control the acquisition parameters, it is
conceivable that differences in the timing between con-
trast administration and acquisition of post-contrast
T1-weighted images resulted in under or overestimation
of CET tumor size. Additionally, scans were performed
at differing magnetic field strengths, which poses an-
other potential limitation. However, subsequent examin-
ation indicated that only venous components were found
to be significantly smaller at 3 T as compared to 1.5 T
scans (18% vs. 33%, p < 0.005, Additional file 2: Figure S1
and Additional file 3: Figure S2), which could have
potentially influenced our results. (As indicated in
Additional file 3: Figure S2, if 3 T data was excluded
we observed a stronger difference between venous
components across tumor types). Additionally, compared

Table 2 ROC curve analyses representing differentiation of
Breast vs. Other, NSCLC vs. Other, Breast vs. NSCLC and pooled
Breast & NSCLC groups vs. Other

Parameter AUC Cut-off value Specificity Sensitivity

Breast vs. Other

Tumor Volume [μl] 0.62 866 45.3 81.5

ADC [μm2/ms] 0.533 1.423 25.3 91.2

rCBV [a.u.] 0.547 2.923 73.5 43.1

Arterial [%] 0.692 21.809 62.8 75

Overlap [%] 0.56 54.138 65.2 61.6

Venous [%] 0.698 68.688 90 44.1

NSCLC vs. Other

Tumor Volume [μl] 0.627 266 68.7 65.3

ADC [μm2/ms] 0.513 0.972 39.2 72.9

rCBV [a.u.] 0.51 0.991 87.8 23.1

Arterial [%] 0.658 29.26 72.9 55.4

Overlap [%] 0.562 18.506 80.3 38.8

Venous [%] 0.518 10.514 32.6 80

Breast vs. NSCLC

Tumor Volume [μl] 0.471 1069 25.2 83.3

ADC [μm2/ms] 0.562 0.991 66.1 47.2

rCBV [a.u.] 0.554 1.174 28.1 86.2

Arterial [%] 0.516 9.645 25.7 87.5

Overlap [%] 0.616 56.675 73.2 48.3

Venous [%] 0.687 46.666 78.4 58.8

Breast & NSCLC vs. Other

Tumor Volume [μl] 0.625 556 54 68.8

ADC [μm2/ms] 0.5 1.417 26.1 84.8

rCBV [a.u.] 0.508 2.886 73.5 47.4

Arterial [%] 0.666 20.202 62.8 76.3

Overlap [%] 0.523 18.51 80.3 44.6

Venous [%] 0.583 72.72 92.9 33.4

Tumor volume, ADC, rCBV, ICA-derived arterial, overlap, and venous
components were analyzed. For each parameter, area under curve (AUC)
representing the accuracy of the measurement, cut-off value, specificity and
sensitivity (expressed in %) are reported
BOLD rows in the table represent total characteristics for the entire patient
cohort examined in the current study
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with the large number of patients with brain metastases
diagnosed each year, the size of the current study is rela-
tively small and therefore results should be interpreted
with caution until it can be verified in a larger, more com-
prehensive study.

Conclusion
In conclusion, the current study demonstrated signifi-
cant differences in vascular characteristics in brain
metastases arising from specific types of primary lesions;
however, we did not detect differences in conventional
diffusion or perfusion characteristics between breast,
NSCLC, and ‘other’ primary tumor types. A significant
correlation between rCBV and ICA overlap component
(volume fraction) was observed, suggesting potential
sensitivity of transiting flow and ‘capillary’ fraction, and
that, for all tumor types. The present results highlight the
biological importance to identify abnormal vascularization
(arterial, venous and overlap) in metastatic brain le-
sions, especially with advanced ICA post-processing
approach. Finally, it is important to note that the
current investigation was preliminary and genetic sub-
grouping and immunohistological analyses would have
to be the subject of future explorations in addition to
multiparametric MRI.

Additional files

Additional file 1: Table S1. Histopathology of primary lesion for ‘Other’
cohort. Primary lesion site and number of case. (XLSX 8 kb)

Additional file 2: Figure S1. Comparison of tumor volume, ADC and
rCBV in different magnetic fields. Tumor volume and rCBV were not
different in 1.5 T or 3 T and that for all patient groups (blue and red,
respectively). ADC value within enhancing lesion was significantly lower
at 1.5 T (1.062μm2/ms) compared to 3 T (1.163μm2, p < 0.05) within ‘other’
group. No other valuable difference was found with standard MRI
metrics. (TIF 174 kb)

Additional file 3: Figure S2. Comparison of arterial, venous or overlap
components proportional to enhancing tumor volume at 1.5 T and 3 T.
The arterial component was significantly smaller in ‘other’ group when
using 1.5 T (7.59%) as compared to 3 T (17.99%, p < 0.05). We found a
smaller composition of veins with 3 T (10.74%) compared to 1.5 T
(30.94%, p < 0.005). The same pattern was seen in ‘Breast’ group at a
higher proportion. We also found a median venous component
composition of 72.72% with 1.5 T, while at 3 T, this value was equal to
16.62% (p < 0.0005). (TIF 145 kb)
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