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Abstract

Purpose: The aim of this study was to compare diffusion tensor imaging (DTI) isotropic map (p-map) with current
radiographically (T2/T2-FLAIR) methods based on abnormal hyper-signal size and location of glioblastoma tumor
using a semi-automatic approach.

Materials and methods: Twenty-five patients with biopsy-proved diagnosis of glioblastoma participated in this study.
T2, T2-FLAIR images and diffusion tensor imaging (DTI) were acquired 1 week before radiotherapy. Hyper-signal regions
on T2, T2-FLAIR and DTI p-map were segmented by means of semi-automated segmentation. Manual segmentation
was used as ground truth. Dice Scores (DS) were calculated for validation of semiautomatic method. Discordance Index
(DI) and area difference percentage between the three above regions from the three modalities were calculated for
each patient.

Results: Area of abnormality in the p-map was smaller than the corresponding areas in the T2 and T2-FLAIR images in
17 patients; with mean difference percentage of 30 ± 0.15 and 35 ± 0.15, respectively. Abnormal region in the p-map
was larger than the corresponding areas in the T2-FLAIR and T2 images in 4 patients; with mean difference percentage
of 26 ± 0.17 and 29 ± 0.28, respectively. This region in the p-map was larger than the one in the T2 image and smaller
than the one in the T2-FLAIR image in 3 patients; with mean difference percentage of 34 ± 0.08 and 27 ± 0.06,
respectively. Lack of concordance was observed ranged from 0.214–0.772 for T2-FLAIR/p-map (average: 0.462 ± 0.18), 0.
266–0.794 for T2 /p-map (average: 0.468 ± 0.13) and 0.123–0.776 for T2/ T2-FLAIR (average: 0.423 ± 0.2). These regions on
three modalities were segmented using a semi-automatic segmentation method with over 86% sensitivity, 90%
specificity and 89% dice score for three modalities.

Conclusion: It is noted that T2, T2-FLAIR and DTI p-maps represent different but complementary information for
delineation of glioblastoma tumor margins. Therefore, this study suggests DTI p-map modality as a candidate to improve
target volume delineation based on conventional modalities, which needs further investigations with follow-up data to
be confirmed.
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Introduction
Glioblastoma is the most aggressive brain tumor in adults.
The current standard of care for patients with glioblastoma
is maximal safe surgical de-bulking, followed by adjuvant
radiotherapy with concurrent and adjuvant Temozolomide
chemotherapy [1].
Diffuse and infiltrative growth of this tumor is a major

determinant of poor prognosis. Inherent heterogeneity,
unclear boundary and escaped invasive tumor cells are
prominent aspects of glioblastoma, making accurate de-
lineation of tumor boundary impossible using conven-
tional MRI (cMRI). However, tumor delineation using
cMRI is a necessary prerequisite step in diagnostic and
therapeutic (monitoring treatment response) radiology
in glioblastoma.
At present, treatment planning for glioblastoma tends to

include the contrast-enhancing tumor on CT/T1-weighted
MRI plus a 2 cm margin, or the T2-FLAIR/T2-weighted ab-
normality on the postoperative MRI scan plus a 1 cm mar-
gin [1]. Identifying the extension of abnormal region has
been improved with recent evolutionary developments in
MRI techniques [2].
Diffusion tensor imaging (DTI) is an advanced MRI

method which is sensitive to infiltrated and disrupted
white matter by tumor cells. Parametric DTI-maps can
reveal peri-tumoral abnormalities that are not apparent
on cMRI [3]. Price et al. have shown that isotropic (p)
and anisotropic (q) components of water diffusion tensor
are altered in peri-tumoral and gross tumor regions,
respectively [3–5]. Tendency of glioblastoma to infiltrate
along white matter tracts often leads to disease exten-
sion into peri-tumoral edema. Changes in white matter
and edema architectures, as well as changes in cellularity
cause an increase in isotropic diffusivity (essentially p
parameter). Although detection of hyper–signal regions
based on T2/T2-FLAIR images is the best marker for
subclinical spread of the tumor, but it is not specific to
the changes due to tumor infiltration [6–8]. Considering
aforementioned issues, present study attempts to gain
some insight into the spatial extension of postoperative
hyper-signal region of glioblastoma on the three MRI
modalities; T2, T2-FLAIR and DTI p-map using a
semi-automatic segmentation method. Main aim of this
study is to compare the three abovementioned
segmented regions in size and location.

Materials and method
Patients selection and MRI data acquisition
Twenty-five patients (range 26 to 65 years) with a
biopsy-proved diagnosis of glioblastoma were recruited
after referral to our radiotherapy center for MR imaging.
The institutional review board approved this study, and
written informed consent was obtained from all subjects.
Patients’ information is presented in Table 1.

MRI data acquisition was performed on a Siemens 1.5 T
Avanto scanner (Siemens Healthcare) with a standard head
coil. Conventional MRI protocols were as follows:
T2-weighted fast spin-echo images (TR/TE = 3000/106 ms,
FOV= 230 mm× 230 mm, Voxel size = 0.7 × 0.7 × 5.0 mm,
slice thickness = 5 mm), T2-FLAIR images (TR/TE = 7000/
93 ms, FOV= 230 mm× 230 mm, Voxel size = 0.9 × 0.9 ×
5.0 mm, slice thickness = 5 mm), T1-weighted sequence
(TR/TE = 1940/3 ms, FOV= 250 mm× 250 mm, Voxel
size = 1 × 1 × 1 mm, slice thickness = 1 mm), and DTI (sin-
gle-shot SE EPI sequence and diffusion gradients with two
b-values (0, 1000 s/mm2) and 12 directions of gradient
(TR/TE = 4500/101 ms, FOV= 240 mm× 240 mm, Voxel
size = 1.8 × 1.8 × 3.0 mm, slice thickness = 3 mm, number
of slices = 30)).

DTI processing and registration
Block diagram for the entire procedure is shown in Fig. 1.
DTI images were processed using Explore DTI (Version 4.8)
software. After brain extraction, motion, eddy current and
EPI corrections [9], three eigenvalues ( 1, 2, 3) and

Table 1 Patients Characteristics

Patient No. Gender Ages(Year) Tumor Site

1 Male 30 Lt Frontal

2 Male 62 Rt Temporal

3 Male 30 Lt Temporal

4 Female 28 Rt Frontal

5 Female 54 Lt Frontal

6 Female 54 Lt Fronto-parietal

7 Female 26 Rt Frontal

8 Female 55 Lt Fronto-parietal

9 Male 54 Lt Frontal

10 Male 60 Rt Parietal

11 Male 65 Rt Parietal

12 Male 37 Rt Frontal

13 Male 53 Lt Temporal

14 Male 50 Rt Parietal

15 Female 53 Rt Parietal

16 Male 50 Lt Temporo-parietal

17 Male 54 Rt Parietal

18 Male 45 Rt Occipital

19 Female 36 Rt Frontal

20 Female 45 Rt Occipital

21 Female 50 Rt Occipital

22 Female 40 Rt Frontal

23 Male 52 Lt Parietal

24 Male 37 Rt Parietal

25 Female 36 Rt Parietal
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mean diffusivity (MD or D) were computed and used to cal-
culate the isotropic component p (p ¼ ffiffiffiffiffiffi

3D
p

) as previously
described [5, 10]. After the p-map was obtained, p-map and
T2 images were registered to the T2-FLAIR image as the
reference image for each patient using a standard three di-
mensional (3D) cubic B-spline transformation with normal-
ized mutual information cost function (SPM 12 software)
[11] . Image enhancement was then applied on p-map for
edge sharpening to improve results of the segmentation
[12]. In addition, greyscale images were normalized to grey
level values ranging from 0 to 1.

Image segmentation
For each patient three MRI modalities were used for seg-
mentation: T2, T2-FLAIR and p-map. A fuzzy C-means
(FCM) clustering approach was implemented for segmenta-
tion of the images [13, 14]. FCM assumes that each pixel
belongs to a cluster with constant intensities which is vari-
ous in different tissue. Segmentation algorithm, based on
fuzzy knowledge and region growing, separated the brain
region into four classes in three MR modalities (T2,
T2-FLAIR and p-map). T2 images were classified into four
clusters: tissues with hyper-intensity values (necrosis, tumor
hemorrhages and cysts), tissues with intermediate intensity
(cerebrospinal fluid (CSF) and edema), tissues with
hypo-intensity values (normal white and gray matter, scalp),
and tissue with very low or zero intensity (skull, back-
ground). T2-FLAIR images also were classified into four
classes: tissues with hyper-intensity values (necrosis, tumor
hemorrhages and cysts), tissues with intermediate intensity
(edema), tissues with hypo-intensity values (scalp, normal
white and gray matter) and tissue with zero intensity (CSF,
skull, background). Similarly, p-maps were classified into
four clusters: tissues with high hyper-intensity values
(tumor hemorrhages, cysts and CSF), tissues with inter-
mediate intensity (edema), tissues with hypo-intensity
values (normal white and gray matter), and regions with
zero intensity (background). We used region growing
method to group pixels together according to the rate of
change of their intensities over a region. An arbitrary seed
pixel was chosen and similar regions from seed point grad-
ually coalesced into expanding regions. This whole process
was continued until all pixels were grouped to one region.
The semiautomatic segmentation method was applied to

each patient’s data. Segmentation results were validated

based on manual expert’s segmentation. Hyper-signal abnor-
mal regions on T2, T2-FLAIR images, and obviously in-
creased isotropy on the p-maps were manually segmented
by a radiologist with 10 years of experience in neuro-
oncology. They were visually evaluated and revised by an-
other radiologist to obtain an accurate contour. Sensitivity,
specificity and dice-score [15–17] were then calculated for
alignment of the hyper-signal regions between each
semi-automated and manual segmentation for each patient.

Calculation of area of segmented region and discordance
index
For the sake of comparison, the area of abnormal masks
as segmented on T2, T2-FLAIR images and p-maps were
calculated in square centimeter by multiplying all pixels’
sizes with the number of pixels. Three segmented regions
were defined as follows: AT (T2 derived abnormal region),
AF (T2-FLAIR derived abnormal region), and AP (p-map
derived abnormal region). In addition, discordance index
(DI), a measure of similarity in location was used for
assessing agreement of locations of the three abnormal
regions. This index was defined as the ratio of union of
the two regions minus the intersection of the same two
regions to the union of two regions, and as follows:

� DIFP ¼ AF∪APð Þ− AF∩APð Þ
AF∪AP

� DITP ¼ AT2∪APð Þ− AT2∩APð Þ
AT2∪AP

� DITF ¼ AT2∪AFð Þ− AT2∩AFð Þ
AT2∪AT

DIFP: discordance index between segmented regions
on T2-FLAIR image and p-map,
DITP: discordance index between segmented regions

on T2 image and p-map,
DITF: discordance index between segmented regions

on T2 and T2-FLAIR images,
DI yields values between 0 (one region is perfectly

similar or in agreement with another region) and 1 (two
regions are completely apart). Higher score of DI means
worse concordance between the two considered regions;
low scores of DI mean better concordance.

Fig. 1 Block diagram of methodology
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Results
Evaluation of semiautomatic segmentation
Examples of the results of FCM– RG method and
manual segmentation are presented for two patients
in Fig. 2. Columns a, b and c demonstrate the results
of FCM segmentation on T2, T2-FLAIR images and
p-maps. Extracted hyper-signal abnormal regions from
FCM and manual segmentation were overlaid on
T2-FLAIR images that are shown in columns d and e,
respectively. This figure shows that semi-automatic
segmented regions visually correspond closely to the
expert’s segmented ones. Three metrics as sensitivity,
specificity and dice score were calculated for each pa-
tient and each modality. Average value of each metric
over all patients are summarized in Table 2, showing
that mean value of sensitivity and specificity are
above 0.85 for each modality. Mean value for dice
score over all patients between manual and semiauto-
matic contouring was 0.89 ± 0.08, 0.91 ± 0.05 and 0.92
± 0.04 for segmented regions on T2, T2-FLAIR images
and p-map, respectively. These values indicate that
semi-automatic segmentation is matched well with
the expert’s segmented regions.

Abnormal regions comparison in relation to size and
discordance index
The area of segmented abnormal regions from T2,
T2-FLAIR images and p-map are presented in Table 3.

A) Comparison of abnormality area in the p-map
with the corresponding areas in the T2 and T2-
FLAIR images:

a) In 17 out of 25 patients, the abnormality area in the
p-map was smaller than in the corresponding areas
in the T2 and T2-FLAIR images (AP <AT2, AP <AF)
with mean difference percentage of 30 ± 0.15 (min:
7%, max: 61%) and 35 ± 0.15 (min:13%, max:63%),
respectively.

b) In 4 out of 25 patients, the abnormality area in the
p-map was larger than in the corresponding areas
in the T2-FLAIR and T2 images (AP >AF, AP >AT2)
with mean difference percentage of 26 ± 0.17 and
29 ± 0.28, respectively

c) In 3 out of 25 patients, the abnormality area in
the p-map was larger than the one in the T2

image and smaller than the one in the T2-FLAIR
image (AT2 < AP <AF) with mean difference

Fig. 2 Results of segmentation on two patient’s data with glioblastoma who had undergone partial resection. Columns (a-c): FCM segmentation
on (a) T2 (blue), (b) T2-FLAIR (yellow), (c) p maps (pink). (d) results of FCM segmentation overlaid on T2-FLAIR images, (e) Manual segmented
region on three images overlaid on T2-FLAIR. First row represents the less agreement in location between T2/T2-FLAIR and p-map (DITF = 0.26,
DITP = 0.57, DIFP = 0.65). Second row indicates the close similarity between three modalities (DITF = 0.18, DITP = 0.23, DIFP = 0.19)

Table 2 Evaluation of semiautomatic segmentation for each
modality

Sensitivity
Mean(±SD)

Specificity
Mean(±SD)

Dice Score
Mean(±SD)

T2 0.86(±0.08) 0.92(±0.001) 0.89(±0.08)

T2-FLAIR 0.88(±0.07) 0.94(±0.04) 0.91 (±0.05)

DTI-p map 0.87(±0.05) 0.93(±0.01) 0.92 ± (0.04)
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percentage of 34 ± 0.08 and 27 ± 0.06,
respectively.

d) In 1 out of 25 patients, the regions on the three
modalities were approximately equal in size (AP

AF AT2) with mean difference value less than 5%.

B) Comparison of the abnormality in the T2 images with
the corresponding area in the T2-FLAIR images:

a) In 22 out of 25 patients, the abnormality area in the
T2-FLAIR image was larger than the corresponding
area in the T2 image with mean difference
percentage of 27 ± 0. 29.

b) In 3 out of 25 patients the abnormality area in the
T2 image was larger than the corresponding area in

the T2-FLAIR image with mean difference
percentage of 15 ± 0.2.

In addition to calculation of area, there was a need to
determine the degree of similarity in location of AP, AF

and AT2. So, discordance indices (DITP, DIFP, DITF) were
defined as written in method section. As reported in
Table 3, there was a large range of discordance index be-
tween the three regions; DITP, DIFP and DITF ranged
from 0.266–0.794 (average: 0.468 ± 0.13), 0.214–0.772
(average: 0.462 ± 018) and 0.123–0.776 (average: 0.423 ±
0.2), respectively (Fig. 3).
Despite acquiring the results of differences in tumor

extension and location (Table 3), intriguing findings
were observed in some patients as follows:
In patient #21, a small hyper-signal abnormal region

was seen in left temporal lobe on T2-FLAIR image and
p-map that appeared normal on T2 images, while the tu-
moral region was detected in right occipital lobe.
In patient #11, a hyper-signal region was seen at the

center of ventricles on T2-FLAIR image and p-map that
was not detected on T2 image, while whole abnormal
hyper-intense region was detected in right parietal lobe
as listed in the Table 1.

Discussion
Glioblastoma tumor predominantly infiltrates along white
matter tracts and invades to surrounding edematous re-
gion [6, 18]. Previous studies on the behavior of glioblast-
oma suggest that DTI-derived tensor metrics can detect
the integrity of white matter structures as a valid method
without missing infiltrated brain areas [3, 5]. Hence, by
calculating the isotropic (p) and anisotropic (q) metrics of
diffusion tensor proposed by Pena et al. [10], it is possible
to probe diseased brain parenchyma in the study of com-
plex tumor such as glioblastoma. Price et al. have com-
pared DTI-defined invasive and noninvasive regions using
perfusion and magnetic resonance spectroscopy (MRS)
[7]. They contoured p and q abnormalities to identify the
invasive margin and then drew three regions of interest
(ROIs) on p-invasive region (area of increased p and

Table 3 Obtained area and discordance indices between
pathological region extracted from segmentation

Patient
No.

Area(cm2) Discordance Index

(PT2) (PF) (PP) DITP DIFP DITF

1 15.07 18.04 12.35 0.609 0.481 0.672

2 7.18 12.67 8.89 0.411 0.304 0.457

3 13.95 14.43 13.99 0.296 0.340 0.187

4 12.32 14.23 17.06 0.472 0.506 0.598

5 7.24 14.98 10.12 0.577 0.472 0.429

6 32.52 34.58 17.98 0.572 0.583 0.393

7 35.97 33.19 24.19 0.476 0.591 0.367

8 18.02 19.27 22.15 0.258 0.321 0.225

9 6.84 8.85 3.95 0.329 0.379 0.347

10 5.16 6.10 2.95 0.589 0.640 0.228

11 23.05 25.87 21.76 0.266 0.215 0.128

12 11.84 13.67 7.50 0.508 0.575 0.395

13 13.00 13.61 10.02 0.457 0.686 0.453

14 4.75 7.97 2.98 0.480 0.761 0.569

15 8.21 9.52 3.14 0.794 0.772 0.731

16 29.09 23.94 18.84 0.433 0.230 0.336

17 8.39 8.52 9.85 0.300 0.254 0.240

18 12.25 12.01 9.12 0.315 0.214 0.178

19 14.85 9.59 7.32 0.495 0.615 0.658

20 6.12 6.18 4.72 0.512 0.248 0.123

21 3.08 2.52 4.26 0.375 0.411 0.261

22 5.19 7.35 4.45 0.482 0.522 0.714

23 9.62 9.88 8.14 0.430 0.472 0.430

24 8.59 11.05 12.5 0.721 0.239 0.689

25 10.13 12.25 6.62 0.549 0.738 0.776

Abbreviation: PT T2 derived pathological region, PF T2 -FLAIR derived
pathological region, PP DTI-p derived pathological region, DTFP Discordance
Index between T2-FLAIR and p-map, DTTP Discordance Index between T2 and p-
map, DITF Discordance Index between T2-FLAIR and T2

Fig. 3 A graph showing the calculated DI% of abnormal regions
extracted from three modalities. Green, Red and Blue indicate the of
DITF, DITP, DIFP for twenty-five patients
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outside the area of reduced q), p-noninvasive region (out-
side of p abnormal region, in an area similar to the inva-
sive ROI according to T2 image) and contralateral normal
brain. Their results showed that there are significant dif-
ferences in perfusion and MRS parameters between de-
fined invasive and non-invasive regions based on the
p-map. This study has clearly demonstrated that defined
invasive and non-invasive regions based on p/q-maps look
similar in appearance on T2 image but different in infor-
mation content on the local environment. Furthermore,
Price et al. in other studies have shown that increased
DTI-isotropic component (p) around gross tumor indi-
cates the infiltrating tumor margin [3, 5, 19]. These zones
extend beyond abnormal areas on both enhanced T1- and
T2-weighted MRI images. Four regions were selected on
the abovementioned study; tumor, possible tumor infiltra-
tion near the tumor margin, edema and normal appearing
contralateral white matter. From their spatial distribution
of four regions in the p: q space, it can be observed that
the healthy white matter has low p value and high q value
with high variance. Tumor has high p value and very low
q value. Edema has high p value and slightly lower q value
than white matter and tumor margin with possible tumor
infiltration demonstrate high p and low q values. As
shown in these studies, it is proved that affected white
matter tracts by tumor can be identified on DTI in four
patterns categorized on the basis of isotropy and anisot-
ropy (p, q) components. Accordingly, results of these stud-
ies demonstrate that the hyper-signal abnormal region on
the p-map is appeared due to presence of either tumor or
infiltrated white matter or edema.
On the other hand, and according to the current stan-

dards, clinical target volume concepts are based on ei-
ther T2 or T2-FLAIR images to encompass possible
microscopic disease. T2 and T2-FLAIR images are helpful
for assessing non-enhancing tumor and edema extent
but are not specific to changes due to tumor infiltration.
Therefore, various MRI sequences reflect different prop-
erties of tissue, and no single imaging metric is currently
sufficient to delineate the region of non-enhancing
tumor. Consequently, we concluded that there is a need
for further evaluation of extension of the hyper-signal
regions on DTI p-map and T2/T2-FLAIR conventional
images as a preliminary study. Thus, p-maps were con-
sidered beyond segmentation method for T2, T2-FLAIR
images in FCM-RG semi-automatic segmentation pro-
cedure. Results of differences between size of abnormal
regions on T2 and T2-FLAIR images (≃15%) for each pa-
tient show that using only one of these two structural
techniques may not be adequate for delineation of
boundary of the hyper-signal abnormal regions in radio-
therapy planning. However, these images cannot differ-
entiate between pure edema and tumor-infiltrated
edema. Noticeble differences were found between the

size and location of hyper-signal abnormalities on the
p-map in comparison with T2/T2-FLAIR images. A large
range of Discordance Index (DI) between the segmented
abnormal regions on the p-map/T2 image and p-map/
T2-FLAIR image in Table 3 represent that hyper-signal
regions on three images were different not only in size
but also in location. For example, for patient #3, results
show that in spite of equality in abnormality’s size be-
tween three modalities, three regions are not completely
concord to each other (DITP = 0.296, DIFP = 0.34 and
DITF = 0.187). T2 or T2-FLAIR images only reveal partial
tissue signatures of brain-tumor microenvironments.
Furthermore, DTI p-map can identify diffusion signature
of tissue and subtle white matter abnormalities. There-
fore, p-map may be used to assist in delineation of whole
abnormal hyper-signal regions in treatment planning of
glioblastoma based on cMRI.
Main limitation of this study was DTI acquisition with

only 12 directions and 2 b-value. Another important
limitation was the lack of a follow-up imaging data to
assess recurrence site in relation to three abnormal re-
gions. Future work in this direction can include a larger
prospective study based on a more patient population
with follow-up imaging to investigate recurrence site.

Conclusion
This study suggests that DTI p-map has the potential to
improve target volume delineation based on T2 and
T2-FLIAR modalities, but further investigation is needed
to confirm it. Accurate manual segmentation of unclear
boundary of abnormality on p-map is time-consuming
and difficult, whilst the proposed segmentation proced-
ure in this study results to decrease segmentation time.
Therefore, this method might be a reliable way to
segment hyper-signal regions on three modalities.
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