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Abstract

Background: For oncological evaluations, quantitative radiology gives clinicians significant insight into patients’
response to therapy. In regard to the Response Evaluation Criteria in Solid Tumours (RECIST), the classification of
disease evolution partly consists in applying thresholds to the measurement of the relative change of tumour. In
the case of tumour volumetry, response thresholds have not yet been established. This study proposes and
validates a model for calculating thresholds for the detection of minimal tumour change when using the volume of
pulmonary lesions on CT as imaging biomarker.

Methods: Our work is based on the reliability analysis of tumour volume measurements documented by the
Quantitative Imaging Biomarker Alliance. Statistics of measurements were entered into a multi-parametric
mathematical model of the relative changes derived from the Geary-Hinkley transformation. The consistency of the
model was tested by comparing modelled thresholds against Monte Carlo simulations of tumour volume
measurements with additive random error. The model has been validated by repeating measurements on real
patient follow ups.

Results: For unchanged tumour volume, relying on a normal distribution of error, the agreement between model
and simulations featured a type I error of 5.25 %. Thus, we established that a threshold of 35 % of volume
reduction corresponds to a partial response (PR) and a 55 % volume increase corresponds to progressive disease
(PD). Changes between −35 and +55 % are categorized as stable disease (SD). Tested on real clinical data, 97.1 %
[95.7; 98.0] of assessments fall into the range of variability predicted by our model of confidence interval.

Conclusions: Our study indicates that the Geary Hinkley model, using published statistics, is appropriate to predict
response thresholds for the volume of pulmonary lesions on CT.

Keywords: Patient monitoring, Medical oncology, Drug response biomarkers, Reproducibility of results, Decision
support techniques

Background
Imaging is essential in the diagnosis and management of
patients with cancer, both in clinical practice and clinical
research. Among the available imaging modalities, com-
puted tomography (CT) is largely used in oncology for
the initial evaluation of lesions and to characterize
changes in tumour measurements [1–3].
Visual evaluations of CT images are generally suffi-

cient to make general assessments when clinical exami-
nations or changes are obvious. Subjective assessments
are limited, however, when changes are modest or

confounded by inter- and intra-observer variability. A
recent publication suggests that the early adoption of re-
producible and reliable quantitative imaging biomarkers
(QIB) may prevent large and costly clinical phase III
studies based on flawed response data from earlier stud-
ies [4, 5].
The Response Evaluation Criteria in Solid Tumours

(RECIST) [6] is a standard that, in part, relies on a sim-
plified approach of the measurement of lesions in con-
sidering their longest axial diameters (LD) and the
categorization of their changes between response, pro-
gression and stability. Despite the interest of such a sim-
ple approach, several limitations have been reported [7]
as the concerns about reliability of measurements and
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its inadequacy in disease settings in which tumour mea-
surements are difficult or uninformative.
In addition, response categories as defined by RECIST

may fail to capture the activity of novel therapies [8, 9]
by categorising as unfavourable stable disease situations
that, some authors believe, may indicate drug effective-
ness for targeted therapies [10]. Volumetric measure-
ments are, by nature, able to capture tumour changes
along the z-axis, unlike uni- and bi- dimensional mea-
surements where tumour changes are measured on a
transverse image plane. With this added information,
several groups shown that, for pulmonary disease, volu-
metric measurements could make assessments more
sensitive and more specific to disease change over time
[11–14].
Before tumour volumetry can be effectively adopted,

the biomarker must be qualified in determining the fore-
most factors affecting the reliability of assessments and
the limitations set by unstandardized practice [15]. For
this purpose, the Quantitative Imaging Biomarker Alli-
ance (QIBA) [16] has enabled the creation of an active
community to work at qualifying the volume of tumour
on CT as a biomarker and at standardizing procedures
[17].
Amongst other requirements, the qualification process

of QIBs must estimate the reliability in assessing changes
in the tumour burden. The estimate of reliability allows
for classification of partial responses (PR), stable disease
(SD) or progressive disease (PD) based on decisional
thresholds supposed to reflect change in the health sta-
tus of patients. But classification of health status remains
challenging, and, unfortunately, there are no experi-
ments reporting repeated measurements of change for
tumours truly changing over time with a known volume
increase or decrease.
Because it is not feasible to repeat biopsy in patients

to confirm true lesion change, the alternative is usually
to characterize the variability of the dual situation
known as “non-change” condition. Characterization can
be carried out relying on repeated measurements of un-
correlated lesions and/or processing test-retest data.
However, relying on these methodologies [18], the quali-
fication of QIBs remains incomplete because, to date, no
method has been suggested to characterize “change”
conditions based on “non-change” outcomes.
In the present study, we adopted a value for the vari-

ability of repeated measurements of uncorrelated lesions
as published by other groups. We use this value of vari-
ability as a starting hypothesis to run a mathematical
model able to predict the decisional thresholds classify-
ing changes in tumour volume. Simulation studies and
validation on real clinical data confirmed the effective-
ness of the method for the monitoring of the volume of
pulmonary lesions using CT.

Methods
Starting hypothesis
A fundamental input needed by our mathematical model
is the magnitude of the variability of volumetric assess-
ment. We hypothesized this value based on works pub-
lished by other groups.
We analysed results and conclusions from different

sources, mainly from the data released by the QIBA Vol-
ume CT group, which we found to be the best docu-
mented, particularly regarding the standard deviation of
repeated measurements [17].
We reviewed additional publications to confirm the

standard deviation value, notably using test-retest data
where patients are scanned twice within a short period
of time, guaranteeing that no clinical change happened.
Again, studies showed that a conservative value of the
standard deviation of 15 % can be considered when le-
sions are not too small [19].

Statistical model
Let X1 be the volume measurement at a given time point
and X2 the measurement at a second time point. Infer-
ence about the relative difference, as used by RECIST, is
equivalent to the inference about the ratio of two vol-
umes because (X2-X1)/X1 = X2/X1-1.
Our first goal was to draw confidence interval attached

to such ratio in its most general form then restricted to
our specific application.
Inference about a ratio of parameters is a well-known

problem in statistics. X1 and X2 are obviously considered
as two random variables with expected values μi, stand-
ard deviation σi, coefficient of variation ci, i = 1,2 re-
spectively, and the coefficient of correlation ρ. Assuming
that (X1, X2) is approximately distributed as a bivariate
normal random variable and noting the ratio W = X2/X1,
the Geary-Hinkley transformation, Z, of W [20] is:

Z ¼ Wμ1−μ2ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22−2W ρσ1σ2 þW 2σ2

1

q

The new variable, Z, may be approximated by the
standard normal distribution under the suitable condi-
tions: X1 > 0, X2 > 0, c1 < 0.39 and c2 > 0.005 [21]. These
conditions are verified in this study with c1 and c2 re-
ported around 0.15 by QIBA. Correct lower and upper
limits for the confidence interval of μ2/μ1 could then be
deduced from this transformation with [22]:

Lower ¼ X2
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1−t2 ρc1c2−t
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where t is the appropriate quantile of the standard nor-
mal distribution.
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In addition to the calculation of the confidence inter-
val associated to ratio evaluation, p-value and statistical
power could be deduced from the data (see Appendix).

Simulation studies
The statistical model is based upon several simplified hy-
potheses: normal distribution of X1 and X2, no correl-
ation between measurement errors and a constant
coefficient of variation. We tested the robustness of the
statistical model to these hypotheses with Monte-Carlo
simulations. We compared the theoretical p-value and
statistical power drawn from the Geary-Hinkley trans-
formation against the p-value and statistical power com-
puted from simulations relying on several different
model of error and distributions.
Three error models were simulated: independent nor-

mally distributed random variables, independent log-
normally distributed random variables, and empirical
uniform distribution. When considering constant coeffi-
cient of variation as c1 = c2 = k, standard error was calcu-
lated as: k * μ1 = (0,3/1,96) * μι, according to QIBA
report [17] for the two first error models.
For each error model, we simulated four ratios be-

tween time points: No change, the thresholds we found
(−35 %; +55 %) and the threshold proposed by QIBA
(+30 %). For unchanged volume, the rejection rate corre-
sponds to the type I error of the test. For the three
threshold values, the rejection rate corresponds to the
statistical power of the test.
For each error model and change, we generated

10,000 samples from two independent distributions
with expected values μ1 and μ2. The percentage of re-
jection was calculated as the percentage of observa-
tion which is not in the 95 % confidence interval.
The statistical power of the test is thus the percent-
age of observations rejected. Statistical analyses and
simulations were conducted using the “R” software
package [23].

Testing on real clinical data
We used image patients that were originally provided by
Merck & Co Inc to the QIBA CT Technical Committee
On Volumetry [12, 15]. A sample of 10 patients were
retrospectively selected from a multi-center study if they
had 5 or more analysable CT scans after their baseline
scan. Patients have stage IIIB or stage IV non-small cell
lung cancer (NSCLC).
CT acquisition protocols were different at each time

point for 70 % of the patients.
CT scan slice thickness ranged from 1 mm to 7 mm

(8.5 %) with most of scans performed with a thickness of
5 mm (87 %). Most of the scans were acquired with a
120kVp tube voltage.

Data were acquired from 10 different scanners, from
three different manufacturers (Siemens, General Electric
and Toshiba). Voxel size ranged from 0.5 mm to 1 mm.
Median, minimum and maximum size of LD was

40 mm, 11 mm and 117 mm respectively.
A total of 426 lesion measurements were then per-

formed on 71 time-points according to a sample size
that was defined by previous studies [24, 25]. On each
scan, a single lung target lesion was preselected by an
expert radiologist to ensure comparable lesions assess-
ment across readers. The expert radiologist defined a
mark attached to each lesions enrolled in the dataset. In
order to minimize segmentation bias, marks were de-
fined to lie within the tumour margin not on the max-
imum cross-sectional area and readers were asked to
delete the mark after lesion identification and before
segmenting.
Three experienced radiologists and three experienced

image scientists with expertise in medical image process-
ing and analysis were involved in the measurements. For
each tumour and at each time point, readers segmented
lesion contours for measurement of tumour volume, so
that each of the six readers assessed all the dataset.
Volume segmentation was performed sequentially

without concomitant display of prior segmentations or
results but in chronological order. The segmentation
process was initiated on the slice where tumour ap-
peared the largest.
Volume assessments were based on a semi-automatic

tool and a manual tool able to refine by modifying previ-
ous segmentations. The same software was used by all
readers (LMS, Median Technologies, Valbonne, France).
Based on the assessment of tumour volume, we com-

puted the relative change with respect to the measure-
ment performed at the first time point which was
considered as the reference. We performed a two-way
evaluation by considering either baseline or nadir meas-
urement as reference time point to balance our dataset
as 68 responding and 67 progressive responses by
readers. We have not investigated the possible bias in-
troduced by our design when considering nadir as refer-
ence, tumours volume at nadir being, in average, smaller
than at baseline.
Relative changes measured by each reader was re-

ported against the average relative change measured by
the group. The scattering of readers assessment at a
given time point was tested to fall into the confidence
interval predicted by our model.
Finally, we used the thresholds we found for the moni-

toring of volume changes to extrapolate thresholds ap-
plicable to the monitoring of effective diameter changes.
We adopted the definition of the effective diameter of
tumours as the diameter computed from a sphere whose
volume is the same as the measured nodule volume.
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Results
Measurements
The mean volume ranged from 29.466 cm3 to
30.719 cm3 with volume ranges from 0.195 cm3 to
380.976 cm3. Majority of measurements were comprised
between 1.0 and 100.0 cm3.

Confidence interval for volume
We relied on the simplest hypotheses. First, the two
measurements were considered as normally distributed
and independent random variables. Second, variances
were assumed to be proportional to the means, based on
the QIBA conclusion.
In the case where ρ = 0, c1 = c2 = k the confidence inter-

val simplifies itself in

Lower ¼ X2

X1

1−t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2−t2k2

p

1−t2k2

Upper ¼ X2

X1

1þ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2−t2k2

p

1−t2k2

The thresholds of the 95 % confidence interval to test
the null hypothesis that the ratio is one, i.e., no change
of tumour volume, are for the lower threshold,

1−1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 0:3=1:96ð Þ2−1:962 0:3=1:96ð Þ4

q

1−1:962 0:3=1:96ð Þ2 ≈0:65

a decrease of 35 %, and for the upper threshold,

1−1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 0:3=1:96ð Þ2 þ 1:962 0:3=1:96ð Þ4

q

1−1:962 0:3=1:96ð Þ2 ≈1:55;

an increase of 55 %.
Figure 1 describes the p-value and statistical power in

relation with the observed ratio X2/X1. The power curve
displays the statistical power, which is the probability of

declaring response as a function of the known volume
ratio according to Equation 2. For a volume decrease of
50 %, 35 % and 20 %, the statistical power is respectively
87.5 %, 50 % and 16 %. For a volume increase of 30 %,
55 % and 80 %, the statistical power is respectively
20.6 %, 50 % and 75 %.

Simulation studies
The performance of the proposed thresholds was
assessed through simulation studies. These simulations
evaluate the coverage probabilities of the confidence
interval and the type I error rates and powers under sev-
eral change and hypotheses of error model.
For unchanged volume simulation (Figs. 2a, 3a, 4a),

the range of p-value was between 3.8 % (lognormal
model) and 6 % (empirical error), near the 5 % expected
value. For an increase of 30 % of tumour volume (Fig. 2b,
3b, 4b), the range of statistical power was between 15 %
(empirical error) and 21.4 % (normal error). The theoret-
ical expected value is 20.6 %. For an increase of 55 % of
nodule volume (upper threshold value) (Fig. 2c, 3c, 4c),
the range of statistical power was between 48.2 and
49 %. The theoretical expected value is 50 %. For a de-
crease of 30 % of nodule volume (lower threshold value)
(Fig. 2d, 3d, 4d), the range of statistical power is 47.2 to
48.4 %. The theoretical value is 50 %.

Test on real clinical data
According to our model of confidence interval, 97.1 %
[95.7; 98.0] of assessments fall into predicted range of
variability as depicted on Figs. 5 and 6. The model is ro-
bust in assessing response, stable or progressive disease.
Significant association was found between assessing pro-
gression and reliability of each side of the CI (p = 0.02).

Extrapolation to effective diameter
Based on the thresholds previously established for vol-
ume (−35 %; +55 %), we found that thresholds of −13 %;
16 % are applicable to the monitoring of effective diame-
ters. We can see that the thresholds applicable to effect-
ive diameter define a narrower region for stable disease
than the −30 %; 20 % applicable to one-dimensional
measurements according to RECIST [6].

Discussion
The design of a usable response criteria requires the es-
tablishment of a set of decisional thresholds that is able
to detect the minimum meaningful change in volume.
To be realistic, sensitivity of thresholds must take into
account the variability introduced by imaging, measure-
ments and anatomy. Several groups studied the volumet-
ric minimum meaningful change according to different
approaches. Analysing non-change conditions, Wang
and al. reported that, when repeating segmentations,

Fig. 1 According to our Geary-Hinkley model, solid dark line
simulates the p-value and dashed red line simulates the statistical
power for a ratio of random variable ranging from 0.4 to 1.8
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only 2 % of the 4225 studied nodules had proportional
volume differences of more or less than 25 % [26]. When
variability encompasses anatomical changes, test-retest
studies suggested that proportional volume differences
outside the range −12.1 to +13.4 % [27], or for smaller
lesions, −21.2 %; 23.8 % [28], could be considered as a
true change with a 5 % risk error. For changing condi-
tions, when sensitivity is associated with the threshold, a
24.9 % relative decrease classified 90 % of tumours with
a mutation as responders and 89 % of tumours without
a mutation as non-responders [29]. Extrapolating RECIST
to volume measurements, thresholds became −65 %; 73 %.
In our case, we were interested in defining thresholds

applicable to relative changes and we assumed that such
thresholds can be derived from the variability of re-
peated measurements. According to QIBA’s analysis, our
study is based on a 15 % standard deviation of repeated
assessments. Considering such a standard deviation, our
mathematical model gives a theoretical set of threshold
as −35 %; +55 %.

These values of thresholds are found consistent with
simulations and with repeated measurements of real
clinical data.
To be noted that, unlike RECIST thresholds, the set of

threshold we defined for volume incorporates only
metrological variabilities.
This conceptual difference can be the origin of the dif-

ferences we found in comparing RECIST thresholds ver-
sus our extrapolation to effective diameter.
A factor that could partly explain such discrepancy is

the different strategy chosen to design WHO criteria
[30], and consequently RECIST criteria. In 1981 WHO
criteria assessed thresholds that were designed to classify
between patient’s responses. In our case, our threshold
aim at classify significant tumour change not knowing
the performance at classifying patients responses.
We identified several limitations to this study. First,

the 15 % standard deviation that we considered could be
re-evaluated. Considering a greater precision, for ex-
ample with standard deviations of 5 and 10 %, the

Fig. 2 Simulation of couple of normally distributed and independent random variables. Horizontal axis is the value of the first random variable as
the value of lesion volume at baseline, vertical axis is the value of the second random variable as the value of lesion volume at a later Time Point.
Dashed first diagonal is the line of equivalence (No change), solid line correspond to thresholds as -35 %; +55 % change. a) Top left: Simulation
of random variable having same value (Rejection=5.25 %). b) Top right: Simulation of a 30 % increase of the random variable. (Rejection=21.41 %).
c) Bottom left: Simulation of a 55 % increase of the random variable. (Rejection=49.21 %). d) Bottom right: Simulation of 35 % decrease of the
random variable. (Rejection=47.2 %)
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theoretical thresholds become −13 %; 15 % and −25 %;
32 % respectively. This observation put in evidence that
our approach is particularly sensitive to the choice of the
standard deviation.
The images we used to confirm hypothesis did not fully

conform to QIBA compliance requirements with regard,
for instance, to signal-to-noise ratio or slice thickness. We
did not evaluate the consequences of such deviations.
Second, we assumed that volume measurements

followed a normal distribution even though some au-
thors suggest a lognormal distribution [9, 27]. Hein and
collaborators affirmed that distribution of errors did not
follow the pattern for normal distribution but they did
not suggest clear justifications [31]. The log transform-
ation of our data gave same rejection probability and,
hypothesizing either type of distribution, returned very
similar results showing the robustness of our model.
A third limitation may lie in the assumption of pro-

portionality between mean and standard deviation, even
if it has also been assumed by other authors [9, 26]. This
relationship between mean and standard deviation

partially justified the use of relative volume difference to
quantify volume measurement variability.
We observed that the assumptions related to the

distribution of errors and to constant coefficient of
variation were not strictly established, nevertheless
our simulations indicate that our model is robust re-
garding these assumptions. For sake of simplicity, the
present investigation suggests keeping these simple
assumptions.
This study was designed to apply to a broad types of

pulmonary tumours; the goal was to model the most
generic set of response threshold. For that goal, we show
that, using only simple first order statistics, the model
allows for inferring confidence interval or response
thresholds. Another approach would have consisted in
addressing specific pulmonary tumours or imaging
data, for such very specific context our method, due
to its theoretical basis, is particularly flexible because
requiring only to test limited statistical assumptions.
The model can also be used to optimise thresholds
for specific image analysis technologies (e.g.,

Fig. 3 Simulation studies with lognormal distributed and independent random variables. Horizontal axis is the value of the first random variable
as the value of lesion volume at baseline, vertical axis is the value of the second random variable as the value of lesion volume at a later Time
Point. Dashed first diagonal is the line of equivalence (No change), solid line correspond to thresholds as -35 %; +55 % change. a) Top left:
Simulation of random variable having same value (Rejection=3.8 %). b) Top right: Simulation of a 30 % increase of the random variable.
(Rejection=20.2 %). c) Bottom left: Simulation of a 55 % increase of the random variable. (Rejection=49.2 %). d) Bottom right: Simulation of 35 %
decrease of the random variable. (Rejection=48.8 %)
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Fig. 4 Simulation studies with empirical model error. Horizontal axis is the value of the first random variable as the value of lesion volume at
baseline, vertical axis is the value of the second random variable as the value of lesion volume at a later Time Point. Dashed first diagonal is the
line of equivalence (No change), solid line correspond to thresholds as -35 %; +55 % change. a) Top left: Simulation of random variable having
same value (Rejection=6 %). b) Top right: Simulation of a 30 % increase of the random variable. (Rejection=15.2 %). c) Bottom left: Simulation of a 55 %
increase of the random variable. (Rejection=48.2 %). d) Bottom right: Simulation of 35 % decrease of the random variable. (Rejection=47.4 %)

Fig. 5 Validation of the model with real patient follow-up data. 6 Experienced readers measured volumetric tumour change involving 10 patients
and 71 time points. A two-way evaluation was performed in considering either baseline or nadir measurement as reference to balance the
assessments between 68 decreasing and 67 increasing changes. Horizontal axis reports the average response assessed by all readers. Vertical axis
reports change assessment for each reader, each of them identified by a spot of different colour. Red lines represent the confidence interval
predicted by Geary-Hinckley model. 97.1 % of readers’ assessment fall into predicted range of error. Left to -35 % dotted blue line are
represented responding assessments, right to +55 % dotted blue line are represented progressive assessment
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segmentation systems) involving given level of auto-
mation or tooling.
The development of a practical method able to draw

sets of decisional thresholds also opens the door to a panel
of new investigations. These investigations would aim
at answering questions like: does the same set of
thresholds apply in the same way to diverse lesions
across the different organs, and what are the most
appropriate target lesions that can be reliably moni-
tored? In the future, we could consider by-organ spe-
cialised sets of response thresholds that would lead to
the design of more complete and efficient response
evaluation criteria.
As in other fields of drug development, it can be ex-

pected that designing more specific criteria will improve
the power of clinical studies.

Conclusion
To perform reliable quantification of radiological
changes of patient, response thresholds and/or confi-
dence intervals must be provided along with the evalu-
ation of the imaging biomarker.
In order to propose a set of response threshold applic-

able to the monitoring of advanced pulmonary cancer on
CT, we implemented and validated a mathematical model
based on well-established reliability analysis in the field.
While the response thresholds we proposed are based

on metrological considerations only, this work is how-
ever a basis allowing the use of tumour volumetry thus
contributing to the decision making, both in the care of
individual patients and in the management of clinical
trials.

Appendix
p-value of the test
The p-value is calculated as the lowest probability for
which we can still reject the null hypothesis for a given set
of observations.-value. The null hypothesis here is X2/X1 =
1. For a given observed ratio X2/X1, the quantile t of stand-
ard normal distribution is calculated from the equation:

X2

X1
¼ 1−t ρc1c2 � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22−2ρc1c2 þ c21−t2c

2
1c

2
2 1−ρ2ð Þ

p
1−t2c22

ð1Þ
The p-value is deduced from the calculation of t. If the

p-value is equal or smaller than the significance level,
the null hypothesis is rejected.

Statistical power of the test
The power of a statistical test is the probability that it
correctly rejects the null hypothesis (H0) when it is false.
The quantile t' of standard normal distribution was cal-
culated assuming the alternative hypothesis of a given
ratio X2/X1 from the equation:

X2

X1

1−t′2 ρc1c2 � t′
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22−2ρc1c2

p
þ c21−t

′2c21c
2
2 1−ρ2ð Þ

1−t′2c22

¼ 1−t2ρc1c2 � t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22−2ρc1c2 þ c21−t2c

2
1c

2
2 1−ρ2ð Þ

p
1−t2c22

ð2Þwith t the upper α/2 quantile of normal distribution.
The power is then deduced from the value of t'.
Thus, from any given ratio X2/X1, calculation of p-

value and power could be calculated.

Fig. 6 Validation of the model with real patient follow-up data. 6 Experienced readers measured volumetric tumour change involving 10 patients
and 71 time points. A two-way evaluation was performed in considering either baseline or nadir measurement as reference to balance the
assessments between 68 decreasing and 67 increasing changes. Horizontal axis reports the average response assessed by all readers. Vertical axis
reports change assessment for each reader, each of them identified by a spot of different colour. Red lines represent the confidence interval
predicted by Geary-Hinckley model. 97.1 % of readers’ assessment fall into predicted range of error. Between -35 % and +55 % blue dotted lines are
represented stable assessments
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