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Abstract
Background Combining conventional radiomics models with deep learning features can result in superior 
performance in predicting the prognosis of patients with tumors; however, this approach has never been evaluated 
for the prediction of metachronous distant metastasis (MDM) among patients with retroperitoneal leiomyosarcoma 
(RLS). Thus, the purpose of this study was to develop and validate a preoperative contrast-enhanced computed 
tomography (CECT)-based deep learning radiomics model for predicting the occurrence of MDM in patients with RLS 
undergoing complete surgical resection.

Methods A total of 179 patients who had undergone surgery for the treatment of histologically confirmed RLS 
were retrospectively recruited from two tertiary sarcoma centers. Semantic segmentation features derived from a 
convolutional neural network deep learning model as well as conventional hand-crafted radiomics features were 
extracted from preoperative three-phase CECT images to quantify the sarcoma phenotypes. A conventional radiomics 
signature (RS) and a deep learning radiomics signature (DLRS) that incorporated hand-crafted radiomics and deep 
learning features were developed to predict the risk of MDM. Additionally, a deep learning radiomics nomogram 
(DLRN) was established to evaluate the incremental prognostic significance of the DLRS in combination with clinico-
radiological predictors.

Results The comparison of the area under the curve (AUC) values in the external validation set, as determined by 
the DeLong test, demonstrated that the integrated DLRN, DLRS, and RS models all exhibited superior predictive 
performance compared with that of the clinical model (AUC 0.786 [95% confidence interval 0.649–0.923] vs. 0.822 
[0.692–0.952] vs. 0.733 [0.573–0.892] vs. 0.511 [0.359–0.662]; both P < 0.05). The decision curve analyses graphically 
indicated that utilizing the DLRN for risk stratification provided greater net benefits than those achieved using the 
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Background
Retroperitoneal leiomyosarcoma (RLS) is a relatively 
common histologic subtype of retroperitoneal sarcomas 
(RPS) that is usually incurable upon the onset of metas-
tasis [1–3]. RLS typically manifests as a large soft-tissue 
mass featuring areas of necrosis located within the peri-
renal or posterior pararenal spaces. The most frequent 
growth pattern, accounting for 65% of cases, is an entirely 
extravascular or extraluminal mass [4]. Moreover, the 
mass usually exhibits a well-circumscribed margin but 
can appear infiltrative on occasion. En bloc resection 
remains the cornerstone of treatment for RLS and is the 
only modality with curative potential [5–7]. Of the vari-
ous subtypes of PRS, RLS is particularly recalcitrant and 
prone to distant metastases, with 55–78% of patients 
developing metachronous distant metastasis (MDM) 
within five years post-surgery, even after undergoing R0 
resection [4, 7, 8]. Metastatic RLS accounts for approxi-
mately 75% of sarcoma-related deaths, with a median 
survival time of just 16 months and an overall 5-year sur-
vival rate of less than 50% [4, 7]. At the time of diagnosis, 
approximately 9% of patients will have already developed 
metastasis; however, most patients develop metastasis 
during the postoperative follow-up period. Thus, pre-
operative assessment of the risk of MDM is essential in 
this patient population to predict surgical efficacy and 
guide targeted intervention strategies. Studies have pro-
vided conclusive evidence that preoperative radiotherapy 
increases the rate of complete histological resection [9]. 
Adjuvant chemotherapy may also help eradicate unde-
tectable micro-metastases that result from circulating 
tumor cells that are released into the bloodstream from 
primary or metastatic foci [10]. In addition, the estab-
lishment of dedicated sarcoma teams in tertiary care 
centers, along with the discovery and implementation 
of novel drugs and immunotherapeutic agents, have led 
to improved outcomes in patients undergoing sarcoma 
treatment. Despite the substantial progress made to date, 
several controversies persist; for example, differences 
in characteristics and uncertainties in the risk of MDM 
among the patients included in various studies may have 
contributed to the discrepant results reported in the lit-
erature. Therefore, a noninvasive tool to identify patients 

with RLS who have an elevated risk of developing MDM 
is urgently needed to guide clinical interventions and 
inform the design of clinical trials.

A prognostic nomogram that integrates clinicopatho-
logical variables could serve as a valuable tool for provid-
ing patient counseling, scheduling surveillance imaging, 
and determining eligibility for clinical trials. Pathological 
evaluation of surgical specimens can only be performed 
postoperatively; thus, radiological imaging continues to 
play a critical role in the diagnosis of suspected RLS [11, 
12]. Contrast-enhanced computed tomography (CECT) 
is recommended by the National Comprehensive Can-
cer Network (NCCN) Clinical Practice Guidelines for 
monitoring the development of metastasis in patients 
with RLS [13]. Tumor-related ‘semantic’ features, such 
as tumor size, lymph node enlargement, and the involve-
ment of adjacent tissues are well-established prognostic 
factors that impact survival outcomes [14, 15]. However, 
conventional visual assessment of the semantic features 
of lesions by radiologists may be inadequate in some 
cases in which there is a relative paucity of such features, 
and reliance on this technique alone may fail to capture a 
great deal of information about the spatial heterogeneity 
of tumors [16]. In addition, the heavy workload imposed 
by manual image evaluation can lead to fatigue among 
radiologists, increasing the likelihood of an overlooked 
lesion and ultimately leading to a decrease in sensitivity. 
Consequently, the search for novel reliable prognostic 
markers is warranted.

Radiomics offers a valuable approach for assessing 
tumor prognosis by enabling the extraction of mine-
able high-throughput quantitative features from medical 
images. This approach facilitates the capture of tissue fea-
tures and lesion characteristics, such as the heterogene-
ity and shape of tumors, that are not discernible to the 
naked eye of radiologists [17, 18]. Deep learning, a form 
of machine learning involving convolutional neural net-
works (CNNs), has achieved impressive performance in 
the automated analysis of visual images. This advance-
ment has accelerated the integration of radiomics into 
medical imaging methodologies and emerged as a new 
paradigm in personalized medicine [19, 20]. Accumu-
lating evidence suggests that combining conventional 

DLRS, RS and clinical models. Good alignment with the calibration curve indicated that the DLRN also exhibited good 
performance.

Conclusions The novel CECT-based DLRN developed in this study demonstrated promising performance in the 
preoperative prediction of the risk of MDM following curative resection in patients with RLS. The DLRN, which 
outperformed the other three models, could provide valuable information for predicting surgical efficacy and tailoring 
individualized treatment plans in this patient population.
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radiomics models with deep learning features can yield 
superior performance in the assessment of tumor prog-
nosis [21, 22]. However, no studies to date have evaluated 
the use of CECT-based radiomic models that combine 
deep learning and hand-crafted radiomic features to pre-
dict the occurrence of MDM in patients with RLS.

Thus, the aim of this study was to construct and vali-
date a novel CECT-based deep learning radiomics nomo-
gram (DLRN) for the preoperative prediction of MDM 
risk in patients with RLS. This model could facilitate the 
development of a personalized approach for targeted 
interventions and enable continual monitoring of high-
risk individuals while simultaneously avoiding the over-
monitoring and over-treatment of low-risk populations.

Methods
Patients
Patients who had undergone surgery and achieved 
margin-negative (R0) resection and were subsequently 
diagnosed with histopathologically confirmed RLS were 
included in this study. An R0 resection was defined as 
the complete removal of macroscopic tumor with micro-
scopically tumor-free resection margins [23]. The patho-
logical diagnosis was based on the consensus of two 
pathologists who had evaluated the surgical specimens 

postoperatively. The exclusion criteria were as follows: 
(1) lack of abdominal CECT scans within the one-month 
period before surgery; (2) poor imaging quality; (3) the 
presence of synchronous distant metastasis (occurring 
at baseline or within six months after surgery); (4) pre-
vious malignancy or other coexisting malignant tumors; 
(5) treatment with anticancer therapy at or before the 
baseline CECT scans were conducted; (6) incomplete 
clinical indicator or follow-up data; and (7) death from 
non-metastatic causes within the 6 months following sur-
gery. Based on these criteria, a total of 121 consecutive 
patients who were treated at a tertiary sarcoma center 
between January 1, 2016, and December 31, 2021 were 
included in the training cohort. This cohort comprised 
60 men aged 60 [49, 65] years and 61 females aged 58.2 
[48, 67] years. Additionally, to assess the reliability of 
the model, an external validation cohort comprising 58 
patients who received treatment from another tertiary 
sarcoma center, including 29 male and female patients 
aged 61 [46.5, 66] and 59 [43, 67.5] years, respectively, 
was established. A flow diagram of patient enrollment is 
shown in Fig. 1.

At our center, retroperitoneal sarcomas are treated 
by an experienced multidisciplinary team of specialists 
throughout the entire process. The dedicated sarcoma 

Fig. 1 Flowchart of patient enrollment. DLR, deep learning radiomics; MDM, metachronous distant metastasis; CECT, contrast-enhanced computed 
tomography
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team includes radiologists, medical oncologists, radio-
therapists, anesthesiologists, surgeons, pathologists, 
nutritionists and specialist nurses so that every decision 
is supported by knowledge of the latest scientific evi-
dence and available clinical trials.

Image acquisition
Arterial, venous, and delayed-phase CECT images were 
retrieved from the Picture Archiving and Communica-
tion System for further evaluation. All CECT images 
were reviewed independently by two professional radi-
ologists with more than 15 years experience in abdominal 
imaging diagnosis. Cohen’s Kappa coefficient and intra-
class correlation coefficient (ICC) were used to evaluate 
inter-observer agreement for semantic features (Supple-
mentary Appendix 1) [24]. In this study, the Cohen’s 
Kappa coefficients/ICCs for semantic features showed 
good agreement between the radiologists as detailed 
in Table S1. Data related to the semantic features of the 
tumors obtained from the CECT images are presented in 

Table 1.The clinical tumor, node, metastasis (TNM) stag-
ing was based on the 8th edition of the American Joint 
Committee on Cancer (AJCC) Staging System [25]. The 
models and parameters of the CT scanners are provided 
in Appendix 1 of the Supplementary Materials.

Region of interest (ROI) segmentation
Each sarcoma ROI was manually delineated at the cross-
section of the primary lesion by radiologist 1 using the 
ITK-SNAP software (Version 3.8, www.itksnap.org) 
based on CECT images with a 5-mm thickness. Contour-
ing was carefully performed within the borders of the 
tumors on arterial, venous, and delayed-phase images, 
avoiding covering the adjacent organs and tissues. Figure 
S1 and S2 show an example of the manual delineation 
method. Three weeks later, 60 patients were randomly 
selected, and the delineation was repeated by radiologists 
1 and 2 to calculate interclass and intraclass correlation 
coefficients (ICCs). An ICC > 0.8 was considered to be 

Table 1 Clinical characteristics of patients in the training and external validation cohorts
Variable Training Cohort (n = 121) External Validation Cohort (n = 58) Training 

vs. Vali-
dation

non-MDM 
(N = 73)

MDM
(N = 48)

P value non-MDM (N = 43) MDM
(N = 15)

P value P value

Age (years, median [IQR]) 59 [50, 64] 60 [48.2, 66.3] 0.693 56.0 [47.5, 62] 66.0 [38.5,69.5] 0.282 0.81
Gender (n, %) 0.158 0.764 0.959
Male 33 (45.2) 28 (58.3) 21 (48.8) 8 (53.3)
Female 40 (54.8) 20 (41.7) 22 (51.2) 7 (46.7)
Ki-67 index (%, median [IQR]) 10 [5, 30] 20 [5, 40] 0.454 10.0 [5, 30] 10.0 [5, 40] 0.596 0.43
Tumor size (n, %) < 0.001 0.885 0.231
≤ 10 cm 41 (56.2) 6 (12.5) 21 (48.8) 7 (46.7)
> 10 cm 32 (43.8) 42 (87.5) 22 (51.2) 8 (53.3)
Clinical N stage (n, %) 0.455 0.272 0.975
N0 63 (86.3) 39 (81.2) 35 (81.4) 14 (93.3)
N1 10 (13.7) 9 (18.8) 8 (18.6) 1 (6.7)
Cystic spaces or necrosis (n, %) 0.338 0.364 0.36
Not Present 34 (46.6) 23 (48.0) 20 (46.6) 10 (66.7)
Present 39 (53.4) 25 (52.0) 23 (53.4) 5 (33.3)
Degree of enhancement (n, %) 0.332 0.642 0.683
Higher than muscle 64 (87.7) 39 (81.2) 35 (81.4) 13 (86.7)
Slightly below or equal to muscle 9 (12.3) 9 (18.8) 8 (18.6) 2 (13.3)
Enhancement pattern (n, %) 0.037 0.587 0.112
Heterogeneous 63 (86.3) 34 (70.8) 38 (88.4) 14 (93.3)
Homogeneous 10 (13.7) 14 (29.2) 5 (11.6) 1 (6.7)
Tumor contours (n, %) 0.712 0.07 0.862
Smooth 39 (53.4) 24 (50) 26 (60.5) 5 (33.3)
Irregular 34 (46.6) 24 (50) 17 (39.5) 10 (66.7)
Adjacent organ involvement (n, %) 0.224 0.16 0.903
Not Present 60 (82.2) 35 (72.9) 36 (83.7) 10 (66.7)
Present 13 (17.8) 13 (27.1) 7 (16.3) 5 (33.3)
Note: The tumor size and N stage was referred to the 8th edition of the American Joint Committee on Cancer (AJCC) staging system

Abbreviations: MDM, metachronous distant metastasis; IQR, interquartile

http://www.itksnap.org


Page 5 of 13Tian et al. Cancer Imaging           (2024) 24:52 

indicative of good reliability and reproducibility. Detailed 
explanations can be found in Supplementary Appendix 2.

Image normalization
The Combat compensation method (https://github.com/
Jfortin1/ComBatHarmonization) was used to retain out-
performing features in texture patterns. This method 
filtered the radiomic feature values affected by incon-
sistencies in imaging protocols, scanners, and param-
eters, thus improving the sensitivity of data acquired on 
different CT equipment [26, 27]. This method has been 
widely used in previous multicenter radiomics studies for 
radiomics feature measurement of CT and MRI images 
[14, 26, 28]. Then, z-scores were calculated to standard-
ize the extracted radiomic features for all three CECT 
phases. Further elaboration on the role of the com-
bat compensation method and its significance in terms 
of data normalization in provided in Supplementary 
Appendix 3.

Radiomic feature extraction
A detailed schematic of the radiomic analysis is pre-
sented in Fig.  2. A total of 5,502 hand-crafted radiomic 
features were extracted from the ROIs of the three-phase 
CECT images using an open-source Python package 
(Pyradiomics). For deep learning analytics, a deep learn-
ing model with the deep CNN ResNet-18 architecture 
was pre-trained using the ImageNet dataset based on the 
PyTorch 1.4.0 framework [29]. In the ResNet-18 model, 
the output of the penultimate layer of the trained CNN 
was used to define the deep learning features; after elimi-
nating the null features, 1,536 deep learning features were 

ultimately extracted from the ROIs of the three-phase 
CECT images. The details on hand-crafted radiomics and 
deep learning features extraction are provided in Supple-
mentary Appendix 4.

Feature selection and construction of the radiomics 
signature (RS) and the deep learning radiomics signature 
(DLRS)
Dimensionality reduction of the hand-crafted radiomics 
features was performed based on the ICCs exceeding a 
certain threshold (ICCs > 0.8), the minimum redundancy 
maximum relevance (MRMR) algorithm, and least abso-
lute shrinkage and selection operator (LASSO) logistic 
regression to select the optimal features, and a RS model 
was constructed based on the selected features. Further-
more, the deep learning features were screened using the 
MRMR algorithm, LASSO logistic regression. Finally, a 
DLRS model was developed by selecting the optimal fea-
tures from the hand-crafted radiomics and DL features. 
The DLR-score was calculated for each patient using a 
linear combination of the selected features weighted by 
their respective LASSO coefficients.

Clinical model construction
The clinical model was constructed based on inde-
pendent clinicoradiological factors predicting MDM 
identified through univariate and multivariate logis-
tic regression analyses (tumor size > 10  cm, as shown in 
Table  2). Additionally, the immunohistochemistry find-
ings of Ki67 were obtained from preoperative sarcoma 
biopsies.

Fig. 2 Schematic of the deep learning radiomics analysis
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DLRN construction and performance assessment of the 
four models
The DLRN model was constructed by combining the 
independent clinico-radiological predictors with the cal-
culated DLR-score via univariate and multivariate logistic 
regression analyses. In addition, a clinical model was gen-
erated based on the independent clinical-semantic vari-
ables described above. The area under the curve (AUC) 
values were calculated to evaluate the performance of the 
DLRN, DLRS, RS, and clinical models. The correspond-
ing sensitivity, specificity, accuracy, positive predictive 
value, and negative predictive value were calculated for 
each of the three models. Pairwise comparisons of the 
AUC values of the predictive models were performed 
using the DeLong test in MedCalc software. Calibra-
tion curves were plotted via bootstrapping with 1,000 
resamples to evaluate the calibration of the models, and 
the Hosmer-Lemeshow test was conducted to assess the 
goodness-of-fit. The clinical usefulness of each model 
was evaluated via decision curve analysis (DCA) by quan-
tifying the net benefit at various threshold probabilities.

Follow-up assessments and survival analysis
Distant-metastasis-free survival (DMFS) was defined as 
the time from surgery to the first appearance of distant 
metastasis [15]. There is no plateau of distant metastases 
following surgical resection of RPS, and they may still 
occur 5–10 years following surgery, requiring long-term 

close follow-up. Imaging plays a critical role in monitor-
ing disease progression; distant metastases detected on 
imaging often precede clinical symptoms by months or 
years. As recommended by the Chinese Society of Clini-
cal Oncology (CSCO) and National Comprehensive Can-
cer Network (NCCN) guidelines, the follow-up protocol 
in this study involved abdominopelvic plain + enhanced 
CT or MRI, along with chest CT every 3 months for the 
initial year post-surgery. After this period, the imag-
ing frequency can be reduced to every 6 months for 2–5 
years, and annually thereafter, depending on the condi-
tion of the patient and the availability of resources. Sub-
sequent histopathologic confirmation based on core 
needle biopsy or surgical specimen tissue ensures the 
accuracy of the imaging assessment results. The follow-
up deadline was May 31, 2023.

Furthermore, an analysis of DMFS times was per-
formed using Kaplan-Meier survival curves, and survival 
outcomes were analyzed using the log-rank test to com-
pare the DMFS probability of patients in different meta-
static risk groups. The DLRN model was included in the 
DMFS stratification assessment.

Results
Baseline information
A total of 179 patients with surgically treated and histo-
logically confirmed RLS were enrolled in the study. MDM 
occurred in 63 patients, 18 and 23 of whom developed 
lung and liver metastases, respectively. The median dura-
tion of the follow-up period was 19 (13.7–34) months 
in the training cohort and 15 (12–28) months in the 
external validation cohort. Comprehensive information 
regarding the clinical characteristics and semantic fea-
tures of the tumors based on the CECT images are sum-
marized in Table 1. There were no statistically significant 
differences between the MDM and non-MDM groups for 
most variables, including age, sex, and the Ki-67 index, in 
either the training or validation cohorts; however, signifi-
cant intergroup differences were observed in the training 
cohort in terms of tumor size > 10 cm (P < 0.001).

Feature selection and construction of the RS and the DLRS
Overall, 5,329 hand-crafted features from the three-phase 
CECT images exhibited high reproducibility (ICC > 0.8); 
in the screening using the MRMR algorithm and LASSO 
logistic regression (Figures S3a-b), 24 most valuable 
hand-crafted features (Figures S3c) were selected to 
develop the RS. For developing the DLRS, 5,329 hand-
crafted features were combined with 1,536 deep learning 
features for inclusion in the subsequent analyses; by using 
the MRMR algorithm, 25 radiomics/DL features were 
selected and entered into the LASSO logistic regression 
model (Fig.  3a-b); finally, 16 deep learning features and 
five hand-crafted features (Fig.  3c) were combined to 

Table 2 Univariate and multivariate logistic regression analysis 
of clinical and CECT semantic features of patients
Variable Univariate Logistic Analysis Multivariate Lo-

gistic Analysis
OR (95% CI) P value OR (95% 

CI)
P 
value

DLR-score 13.445 [7.879, 
73.527]

< 0.001 13.936 
[5.669, 
107.238]

< 0.001

Age 1.005 [0.979, 1.033] 0.72 - -
Sex 0.589 [0.280, 1.225] 0.159 - -
Ki-67 index 1.008 [0.990, 1.026] 0.396 - -
Tumor 
size > 10 cm

8.969 [3.602, 25.882] < 0.001 7.943 
[1.881, 
44.452]

0.009

Clinical N stage 1.454 [0.534, 3.920] 0.457 - -
Cystic spaces or 
necrosis

1.604 [0.322, 11.954] 0.591 - -

Degree of 
enhancement

1.641 [0.593, 4.551] 0.335 - -

Enhancement 
pattern

2.594 [1.050, 6.622] 0.041 1.725 
[0.351, 
8.909]

0.502

Tumor contours 1.714 [0.711, 4.145] 0.227 - -
Adjacent organ 
involvement

1.147 [0.553, 2.386] 0.712 - -

Abbreviations: DLR, deep learning radiomics; CECT, contrast-enhanced 
computed tomography; OR, odds ratio; CI, confidence interval
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construct the DLRS. Subsequently, a DLR-score was cal-
culated for each patient based on a linear combination of 
the selected features weighted by their respective LASSO 
coefficients. The formula used to calculate the DLR-score 
was as follows:

DLR-score = 0.39669421487603296 + 0.031597 × 
D_lbp-3D-k_ngtMDM_Complexity

+ 0.066068 × X1309 + 0.075600 × X179–0.015528 × 
X1312 + 0.041467 × X1255.
+ 0.041481 × A_original_glMDM_LargeDepen-
denceHighGrayLevelEmphasis.

+ 0.059346 × X1387 + 0.048740 × X1487–0.091377 × 
X66 + 0.050499 × X94

+ 0.057080 × D_lbp-3D-m2_glszm_GrayLevelVari-
ance − 0.047711 × X247.
− 0.062957× V_original_glMDM_LowGrayLevelEm-
phasis.
− 0.048884 × X155–0.034018 × X294 + 0.028234 × 
X1444.
+ 0.025147 × D_lbp-3D-m2_glMDM_Depen-
denceEntropy.

− 0.052596 × X367 + 0.034525 × X452 + 0.049526 × 
X1165–0.054271 × X1106.

Fig. 3 Feature selection for the development of the DLRS using the LASSO regression model with a vertical line generated at the log (λ) value by using 
ten-fold cross-validation (a, b); The five radiomics features and 16 deep learning features and their corresponding coefficients (c); DLRS, deep learning 
radiomics signature; LASSO, least absolute shrinkage and selection operator
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Moreover, the meaning of each variable in the formula 
is described in the Supplementary Appendix 5–6.

Development of the DLRN and performance assessment of 
the four models
The univariate and multivariate logistic regression analy-
ses revealed that tumor size > 10  cm and the DLR-score 
were independent predictors of MDM (Table  2). These 
two variables were incorporated into the DLRN in 
the training set (Fig.  4a). The AUCs of the training and 
external validation sets of the DLRN (0.939 and 0.822, 
respectively) were higher than those of the DLRS (0.937 
and 0.786, respectively), RS (0.917 and 0.733, respec-
tively), and clinical models (0.718 and 0.511, respec-
tively) (Table  3). According to the DeLong test, the 
DLRN, DLRS and RS models all performed significantly 
better than the clinical model in the training set (both 
P < 0.001) and external validation set (P = 0.003, P = 0.004, 
and P = 0.015, respectively); however, there was no sig-
nificant difference in performance between the DLRN 
and DLRS models (both P > 0.05) (Table 3). Furthermore, 
the DLRN and DLRS models were comparable in terms 
of their predictive accuracy, specificity, and negative pre-
dictive value, and both outperformed the RS and clinical 
models. As shown in Fig. 4b and c, the calibration curves 
of the DLRN model indicated good consistency between 
the predicted and actual probabilities of MDM in both 
the training and external validation sets. Additionally, 
the DCA graphically revealed that employing the DLRN 
model to predict the probability of MDM conferred 
a better overall net benefit compared with that of the 
DLRS, RS, and clinical models over the relevant thresh-
old range, indicating that the DLRN exhibited good clini-
cal performance (Fig. 4d).

Individualized prognostic evaluation
DMFS outcomes were evaluated for all patients using 
Kaplan-Meier survival curves, which indicated that the 
DLRN model could be used for risk stratification in both 
the training and external validation cohorts (Fig. 5a and 
b), with higher DLRN scores being significantly associ-
ated with poorer DMFS (log-rank tests, P < 0.001 and 
P = 0.002, respectively).

Discussion
The aggressive and invasive nature of RLS, combined 
with the frequency of MDM occurrence, results in a dis-
mal prognosis for patients [1, 5, 13]. In the era of pre-
cision medicine, the ability to accurately predict the 
likelihood of MDM is crucial for facilitating optimal 
therapeutic decision-making. However, there are cur-
rently no reliable tools for predicting such outcomes pre-
operatively. In this bicentric study, we sought to address 
this unmet need by developing and validating radiomics 

methods to extract mineable features from preopera-
tive CECT images. The performances of both the DLRN, 
DLRS, and RS models were significantly greater than 
that of the clinical model in predicting the occurrence of 
MDM, indicating that such radiomics-based approaches 
are likely to improve upon the current methods for the 
diagnosis and management of RLS. This validated, non-
invasive radiomics model can be utilized by radiologists 
and surgeons to enhance the accuracy of preoperative 
MDM predictions and facilitate the design of individual-
ized treatment plans.

Previous studies have reported that age, histologi-
cal grading, pathological subtype, multifocality, and 
R0 resection are the main prognostic factors affecting 
DMFS following surgical resection in patients with RLS 
[14, 30, 31]. However, in the present study, the clinical 
model constructed based on the semantic imaging fea-
tures identified as independent predictors of MDM in the 
univariate and multivariate analyses (tumor size > 10 cm) 
had an AUC of 0.511. This value is considerably inferior 
to that of the radiomics model (0.733–0.786), indicating 
the limited value of assessing the prognosis of RLS solely 
based on visual CECT features. Semantic features, such 
as lesion density, morphology, or size, which can be visu-
ally interpreted by radiologists, are predominantly based 
on empirical judgments. This approach introduces a sig-
nificant degree of subjectivity in image interpretation and 
severely limits the consistency and diagnostic efficacy of 
the model.

Radiomics can overcome the limitations of semantic 
imaging features through image standardization pro-
cessing, optimization of feature extraction algorithms, 
establishment of multi-modal models, enhancement of 
data sets, and introduction of domain knowledge, which 
could improve the diagnostic efficiency and consistency 
of the model. Moreover, the radiomics technique is 
characterized by automatic representative data acquisi-
tion, eliminating the need for clinical index collection, 
semantic feature interpretation, and manual annotation. 
Therefore, radiomics is readily accepted in clinical work-
flow. Radiomics can noninvasively capture risk-related 
intra- and inter-tumoral heterogeneity at the voxel level, 
providing a more objective and thorough means of char-
acterizing sarcomas in a clinical setting [18, 32].

Radiological imaging plays a key role in ascertain-
ing the likelihood of radical surgical resection, given its 
ability to determine the precise anatomical relationship 
between a mass and key retroperitoneal organs and vas-
cular structures. The NCCN guidelines recommend the 
use of CECT for monitoring metastasis in patients with 
RLS, as its occurrence can potentially impact a patient’s 
prognosis and treatment options [13]. Additionally, Cui 
et al. [33] reported that the performance of a multiphase 
CT-based model was superior to that of models that 
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relied on single-phase imaging in the assessment of Inter-
national Society of Urologic Pathologists (ISUP) grad-
ing for clear cell renal cell carcinoma. Ni et al. [34] also 
reported the benefits of using a combined model to dis-
tinguish between sclerosing pneumocytomas and solid 

malignant pulmonary nodules. These findings led to the 
construction of the predictive radiomics model described 
in the present study, which was based on three-phase 
CECT features and exhibited broad representation and 
robust performance.

Fig. 4 DLRN construction and performance evaluation. (a) is a nomogram for individual prediction of MDM risk combined with the DLRS and indepen-
dent clinico-radiological features; (b) and (c) are the calibration curves of the DLRN in the training and external validation cohort, respectively; (d) are 
the decision curves of the DLRN, DLRS, RS, and clinical models of the external validation cohort. DLRN, deep learning radiomics nomogram; DLRS, deep 
learning radiomics signature; RS, radiomics signature; MDM, metachronous distant metastasis
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Given the potential of radiomics and the limitations 
associated with the use of conventional hand-crafted 
features, there has been a surge in studies investigating 
methods for the identification and adaptive and auto-
mated extraction of radiomic features in a data-driven 
manner using deep learning methods, particularly those 
involving CNNs [20]. In contrast to methods that involve 
the selection of hand-crafted features, the deep learn-
ing approach does not necessitate contouring, which not 
only reduces contour variability across manual segmen-
tations, but also enhances efficiency. In addition, deep 
learning provides more detailed information, includ-
ing that related to specific tasks in the hidden layer of a 
neural network, without requiring predefined features 
[22]. Thus, the deep learning approach partially compen-
sates for the limitations associated with methods based 

on hand-crafted radiomics features. Previous studies 
have demonstrated that an integrated model combin-
ing deep learning and hand-crafted radiomics features 
could exhibit superior performance in predicting tumor 
prognosis compared with that of models based on either 
approach alone [21]. In this study, we focused on effec-
tiveness and simplicity; we utilized the MRMR and 
LASSO algorithms for feature selection in combination 
with a machine learning classifier (KNN) to develop an 
integrated DLRS model for predicting the risk of MDM 
after surgical resection to treat RLS. The KNN algorithm 
is one of the simplest and most well-established data 
mining classification techniques, reducing the risk of 
misclassification by maximizing the space between the 
plane and various types of data points. Furthermore, the 
DLRS model yielded better auxiliary predictions than the 

Table 3 Model performances in the training and external validation cohorts
Model Training Cohort External Validation Cohort

SPE NPV ACC AUC 95% CI SPE NPV ACC AUC 95% CI
DLRN 0.959 0.868 0.884 0.939 0.905–0.974 0.814 0.921 0.810 0.822 0.692–0.953
DLRS 0.918 0.870 0.868 0.937 0.899–0.975 0.905 0.864 0.810 0.786 0.649–0.923
RS 0.904 0.864 0.860 0.917 0.870–0.964 0.780 0.889 0.741 0.733 0.573–0.892
Clinical model 0.875 0.872 0.686 0.718 0.644–0.793 0.674 0.750 0.500 0.511 0.359–0.662
DeLong test Standard Error 95% CI P value Standard Error 95% CI P value
DLRN vs. DLRS 0.009 -0.017–0.022 0.816 0.038 -0.037–0.083 0.465
DLRN vs. RS 0.109 -0.160–0.267 0.624 0.031 -0.024–0.096 0.233
DLRN vs. Clinical 0.037 0.148–0.294 < 0.001 0.092 0.094–0.456 0.003
DLRS vs. Clinical 0.042 0.137–0.301 < 0.001 0.109 0.098–0.525 0.004
DLRS vs. RS 0.114 -0.133–0.313 0.429 0.032 -0.042–0.083 0.523
RS vs. Clinical 0.045 0.110–0.287 < 0.001 0.091 0.043–0.401 0.015
Note: The AUCs among models were compared using the DeLong test

Abbreviations: DLRN, deep learning radiomic nomogram; DLRS, deep learning radiomics signature; RS, radiomics signature; SPE, specificity; NPV negative predictive 
value; ACC, accuracy; AUC, area under the receiver operating characteristic curve; CI, confidence interval

Fig. 5 Kaplan-Meier survival analysis curves of distant metastasis-free survival between the groups with low and high DLRN scores in the training (a) and 
external validation cohorts (b). DLRN, Deep learning radiomics nomogram
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RS and clinical models, as indicated by its higher AUC 
and accuracy. In addition, the DLRS model included 16 
deep learning features, indicating that the CNNs may 
have captured quantitative information reflecting the 
risk of MDM in patients with RLS. The lack of interpre-
tation of deep learning feature is a major obstacle to the 
practical application of deep learning models in clinical 
practice. A common approach to improving the inter-
pretation of deep learning feature is to generate visual 
feature CNN Activation Maps and explore the decision-
making implications of the attention regions [35–37]. As 
shown in Figure S4, the Activation Maps highlighted cer-
tain parts within the tumors with high predictive value 
in determining the MDM status. Typically, regions with 
high heat indicate areas of tumors that are abnormally 
active [35]. These regions may be characterized by fea-
tures such as tumor size, shape, density, blood flow, and 
others. Broadly speaking, the Activation Maps of MDM 
tumors appear busier in comparison to those of non-
MDM tumors, which look sparser. Such visual pattern 
may make the process less of a “black box” and increase 
the interpretability of the machine diagnosis. We hypoth-
esized that the areas highlighted in Activation Maps 
would exhibit greater correlations with the likelihood of 
MDM occurrence.

The significantly relevant clinico-radiological char-
acteristic (tumor size > 10  cm) was subsequently com-
bined with the DLRS model to establish a highly accurate 
DLRN, which outperformed both the DLRS and clinical 
models in predicting the occurrence of MDM, as evi-
denced by its excellent clinical utility. Another intriguing 
finding was the satisfactory risk stratification perfor-
mance of the DLRN for determining DMFS outcomes in 
both the training and external validation cohorts, high-
lighting the fact that patients with MDM experience a 
poorer prognosis.

Surgical resection remains the cornerstone of treat-
ment for localized RLS [13]; however, achieving an R0 
resection with microscopically negative margins remains 
challenging. Owing to its rarity and complexity, cen-
tralized treatment of RPS in dedicated sarcoma centers 
entails a coordinated approach among multiple health-
care professionals. This approach can improve outcomes 
by ensuring that patients receive the most advanced and 
comprehensive treatment options. A previous nation-
wide study reported that the prognosis of patients with 
RLS may be impacted by the case volume and expertise 
of the treating facility [38]. Bonvalot et al. [39] reported 
that patients treated surgically at specialty sarcoma cen-
ters exhibited significantly better OS than those treated 
at non-centers, with 2-year OS of 87% vs. 70%, respec-
tively (P < 0.001); notably, the multivariate analysis 
identified treatment at a specialized center as an inde-
pendent predictor of OS, with a twofold lower odds ratio 

of death. Gutierrez et al. [40] also reported a higher OS 
for patients with retroperitoneal sarcoma treated in a 
dedicated sarcoma center (39 vs. 31 months, P = 0.011). 
Despite advancements in surgical techniques, the preva-
lence of MDM remains high, highlighting the desperate 
need for additional therapeutic strategies, such as multi-
modal therapy for RLS. Doxorubicin and ifosfamide are 
commonly used in first-line postoperative chemothera-
peutic regimens [13]; however, no standardized treat-
ment regimen involving currently available agents has 
been established to date. Although there is no available 
evidence to confirm the benefit of neoadjuvant chemo-
therapy, it may be an option for patients with a high risk 
of developing MDM, following discussions with a mul-
tidisciplinary team of physicians. Notably, a phase III 
randomized controlled trial (NCT04031677) is currently 
underway to evaluate the clinical benefits of neoadjuvant 
chemotherapy preceding surgery, the results of which are 
expected to be reported in 2027 [1]. Radiotherapy offers 
a potential means of eliminating residual micro-metasta-
ses, although its use remains controversial. For example, 
the results of a phase III clinical trial (EORTC62092) 
revealed that preoperative radiotherapy did not prolong 
disease-free survival, and most guidelines do not cur-
rently recommend its use as a regular treatment option 
for various sarcomas [41]. Aiba et al. [42] reported that 
combined radiotherapy and hyperthermic chemotherapy 
may also be an effective option for salvage treatment of 
residual lesions. Additionally, promising outcomes have 
been observed in patients with high-risk RPS treated with 
targeted therapies such as pazopanib and olaratumab, as 
well as with novel immunotherapies such as nivolumab 
and pembrolizumab [43]. Studies investigating the role of 
the tumor microenvironment, tumor-infiltrating lympho-
cytes, and tumor-mutated genes have provided insights 
into the interactions between sarcomas and immuno-
therapeutic agents and identified potential targets for 
immunotherapy that should be further assessed in future 
clinical trials [44, 45]. The landscape of RLS treatment 
is moving toward personalized therapy, early interven-
tion, the expansion of drug options, and better survival 
outcomes. Thus, the sarcoma team can noninvasively and 
accurately identify people at high risk for MDM by using 
the DLRN proposed in this study to guide personalized 
adjuvant treatment regimens and improve clinical out-
comes, and potentially achieve the ultimate goal of preci-
sion medicine.

This study has some limitations that merit consider-
ation. First, inherent bias cannot be eliminated owing to 
the retrospective design. Prospective validation of the 
deep learning radiomics model is necessary to confirm 
its generalizability and clinical utility. Second, the sample 
size may have been relatively small because of the rarity 
of RLS; considering the small sample validation cohort, 
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the real differentiation efficiency of clinical variables 
would be easily interfered with inevitable inter-cohort 
bias causing the unpredicted reduction of diagnostic effi-
ciency. Finally, the biological significance of the selected 
radiomics features remains to be elucidated, and future 
research integrating imaging modalities with molecular, 
epigenetic, or transcriptional data may provide greater 
insight into micro-information and the relationships with 
other variables.

Conclusions
The novel DLRN constructed in this study, which com-
bined deep learning radiomics features and semantic 
tumor features based on CECT imaging, exhibited prom-
ising performance in the preoperative prediction of the 
risk of MDM following curative resection in patients with 
RLS. This nomogram can provide valuable information 
that would allow dedicated sarcoma teams to better tailor 
personalized treatment plans and improve clinical out-
comes. Further investigations from multiple centers are 
warranted to validate this model before its future clinical 
application.
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