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Abstract 

Purpose To create radiomics signatures based on habitat to assess the instant response in lung metastases of colo-
rectal cancer (CRC) after radiofrequency ablation (RFA).

Methods Between August 2016 and June 2019, we retrospectively included 515 lung metastases in 233 CRC patients 
who received RFA (412 in the training group and 103 in the test group). Multivariable analysis was performed to iden-
tify independent risk factors for developing the clinical model. Tumor and ablation regions of interest (ROI) were split 
into three spatial habitats through K-means clustering and dilated with 5 mm and 10 mm thicknesses. Radiomics 
signatures of intratumor, peritumor, and habitat were developed using the features extracted from intraoperative 
CT data. The performance of these signatures was primarily evaluated using the area under the receiver operating 
characteristics curve (AUC) via the DeLong test, calibration curves through the Hosmer-Lemeshow test, and decision 
curve analysis.

Results A total of 412 out of 515 metastases (80%) achieved complete response. Four clinical variables (cancer 
antigen 19–9, simultaneous systemic treatment, site of lung metastases, and electrode type) were utilized to con-
struct the clinical model. The Habitat signature was combined with the Peri-5 signature, which achieved a higher AUC 
than the Peri-10 signature in the test set (0.825 vs. 0.816). The Habitat+Peri-5 signature notably surpassed the clini-
cal and intratumor radiomics signatures (AUC: 0.870 in the test set; both, p < 0.05), displaying improved calibration 
and clinical practicality.

Conclusions The habitat-based radiomics signature can offer precise predictions and valuable assistance to physi-
cians in developing personalized treatment strategies.

Keywords Colorectal neoplasms, Lung metastasis, Radiofrequency ablation, Radiomics, Habitat imaging, Peritumoral 
micro-environment, Immediate response
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Introduction
The lung ranks as the second most frequent location for 
metastases from colorectal cancer (CRC) [1]. Despite the 
importance of surgery, published reports indicate vary-
ing 5-year survival rates of 24 to 56% following surgical 
removal of CRC lung metastases [2]. European Society 
for Medical Oncology (ESMO) guidelines for metastatic 
CRC suggest considering local ablation alongside resec-
tion, based on factors like tumor size, number, location, 
lung tissue loss, comorbidity, and other relevant consid-
erations [3].

Computed tomography (CT)-guided percutaneous 
radiofrequency ablation (RFA) stands as a viable choice 
for treating small lung metastases, especially those under 
3 cm [4, 5]. However, due to the lack of histological evi-
dence confirming complete ablation and a reported 
recurrence rate of 32.6% [6], assessing ablation outcomes 
after RFA remains challenging. The usual assessment of 
ground-glass opacity (GGO) [7], linked to residual tumor 
and recurrence [8], can be impacted by intraoperative 
intra-alveolar hemorrhage (IAH) or atelectasis [4, 9, 
10]. The initial 3-month inflammatory response around 
the ablated lesion complicates early efficacy evalua-
tion [11]. Hence, there’s a need to objectively define and 
evaluate the immediate ablation outcomes for CRC lung 
metastases.

In the context of personalized and precise treatments, 
radiomics can extract high-dimensional quantitative fea-
tures from medical images. These features encompass 
data about tumor heterogeneity and the microenviron-
ment [12, 13], enabling a more accurate assessment of 
traits and treatment response [14, 15]. Peritumoral fea-
tures have been proposed to enhance radiomic models’ 
predictive abilities [16–19]. Unlike previous methods, a 
novel approach divides tumors into subregions known 
as habitats, containing voxels with similar attributes and 
consistent tumor biology [20]. This approach improved 
intratumoral heterogeneity quantification [21, 22].

To the best of our knowledge, no studies have aimed to 
develop habitat-based radiomics analysis to predict early 
RFA efficacy in CRC lung metastases. In this study, we 
employed a new radiomics approach to identify imag-
ing biomarkers within intratumoral, peritumoral, and 
sub-regional zones. This enables assessing the immediate 
response to RFA in CRC lung metastases.

Methods
Patient selection and clinicopathological information
Due to the retrospective nature of this study, patient 
informed consent was waived. We included 233 con-
secutive CRC patients with lung metastases who under-
went initial RFA between August 2016 and June 2019. 

Inclusion criteria were: (1) confirmed CRC through his-
tology; (2) lung metastases treated with RFA, ≤ 3 cm in 
maximum diameter; (3) comprehensive medical records 
with clinical variables and CT data from procedure and 
follow-up; (4) technically successful ablation; (5) ade-
quate normal organ function. Exclusion criteria were: 
(1) receiving other local treatments like radiotherapy 
or re-ablation; (2) inability to tolerate RFA; (3) concur-
rent malignant tumors or extrapulmonary metastasis. 
Patients with multiple nodules were included, analyz-
ing each nodule individually [10, 23, 24]. A cohort of 515 
lung metastases in 233 CRC patients who underwent 
RFA was enrolled and randomly divided into training 
and test cohorts at a 4:1 ratio (Fig.  1). Supplementary 
data 1 provided detailed RFA equipment and procedure 
information.

The clinical variables including age, gender, serum 
tumor markers (carcinoembryonic antigen (CEA) and 
cancer antigen 19–9 (CA19–9)), lymphadenopathy at 
diagnosis, concomitant systemic treatment, and primary 
tumor location were collected within 1 week before RFA. 
Radiological data from intraoperative CT scans included 
pulmonary metastases size, location, proximity to vital 
structures like the heart or major blood vessels (> 3 mm 
in diameter), distance to the pleura or diaphragm (within 
1 cm), electrode type, and complications such as IAH or 
pneumothorax.

CT examination protocol and local efficacy assessment
Pre- and immediate post-ablation CT scans were con-
ducted using the United Imaging uCT 760 (United Imag-
ing Medical Technology Inc.) and Philips Brilliance 64 
slice (Philips Medical Systems Inc.) machines. Settings 
were: 200 mA, 120 kVp, 0.5 s/round, with 1 mm or 1.5 mm 
section thickness. The images were reconstructed using 
iterative reconstruction, and the resulting CT data was 
stored in the. DICOM format.

A contrast-enhanced chest CT was conducted as 
the baseline 1 month after ablation [25], followed by 
additional scans every 2 to 3 months. The treatment’s 
local efficacy was assessed by two experienced radiolo-
gists who were unaware of clinical data. Evaluation was 
grounded in chest-enhanced CT scans performed at least 
6 months after RFA, adhering to the modified response 
evaluation criteria in solid tumors (mRECIST) crite-
ria [11, 26]. Should there be differences in interpreta-
tion between the radiologists, consultation with a senior 
expert boasting over 20 years of experience was pursued. 
Complete response (CR) was determined by the pres-
ence of cavity, fibrosis, or nodule without enhancement. 
In contrast, the presence of irregular nodular, scattered, 
or eccentric patterns of peripheral enhancement within 
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1 cm of the ablation area in two consecutive CT scans 
denoted a non-complete response (non-CR).

Workflow of radiomics analysis
The radiomics analysis was executed through a series of 
steps: image segmentation, feature extraction, feature 
selection, signature construction, and evaluation (Fig. 2).

Advanced image processing and mask segmentation
To enhance the robustness of medical image analy-
sis, preprocessing techniques were applied. The CT 
images were uniformed to a common resolution of 
1 mm × 1 mm × 1 mm by the B-spline interpolation algo-
rithm, and then the window width was adjusted within 
the range of - 1200 Hu to 600 Hu and the intensity was 
scaled within the range of 0 ~ 255.

Recently, numerous studies have demonstrated that the 
improved methods based on U-Net performed well in the 
segmentation of pulmonary nodules, which were trained 
on the Image Database Resource Initiative (IDRI) created 
by the US Institutes of Health based on the Lung Image 
Database Consortium (LIDC) [27–31]. We also have 
trained a 3D UNet model based on the open-source data-
set to segment the target lesions and immediate ablation 
regions from pre- and postoperative CT images, with a 
Dice coefficient of 83.04% [32]. These masks were subse-
quently verified by two junior radiologists (HZH and HC, 

8 years of specialized chest imaging) and the necessary 
adjustments have been made to guarantee accuracy and 
repeatability using the ITK-SNAP (version 3.8.0, http:// 
www. itksn ap. org). If they had disagreements, it would be 
determined in consultation with the senior expert (WTL, 
30 years of specialized chest imaging).

Peritumoral region dilation
The regions of interest (ROI) were expanded using the 
mask padding toolkit provided by the Onekey AI plat-
form. We evaluated the impact of different peritumoral 
sizes on model predictability by applying dilation inter-
vals of 5 mm. Any ROIs extending beyond the lungs or 
overlapping with the heart, major blood vessels, or dia-
phragm were manually adjusted.

Habitat generation
Local features, including local entropy and energy values, 
were extracted from each voxel within VOI. These feature 
vectors represented diverse aspects of voxel properties. 
A 77-dimensional feature vector (Supplementary data 2) 
was generated for each block using a 3 × 3 × 3 non-over-
lapping moving window. The Calinski-Harabasz (CH) 
value selection method [33] was used to determine the 
optimal number of clusters. Subsequently, the K-means 
method was employed to cluster sub-regions for each 
sample.

Fig. 1 Flow diagram of the enrolment patients

http://www.itksnap.org
http://www.itksnap.org
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Feature extraction and selection
Handcrafted features extracted using the Pyradiomics 
tool (version 3.0.1) were categorized into three groups: 
geometry, intensity, and texture (Supplementary data 
2), following the guidelines of the imaging biomarker 
standardization initiative (IBSI). Unsupervised cluster-
ing yielded varying physical meanings for the habitat 
extracted from the subregions with identical centers. To 
mitigate this, mean feature values were computed.

Robustness was assessed through test-retest and inter-
rater analyses, with the intraclass correlation coefficient 
(ICC) set at a threshold of ≥0.85. Nonetheless, ICC was 
not suitable for assessing the unsupervised habitat sig-
nature. All features were standardized using Z-scores 
to maintain a normal distribution, followed by a t-test 
to retain radiomic features with p-value < 0.05. Pear-
son’s correlation coefficient was computed to pinpoint 
highly consistent features with a coefficient > 0.9. The 
greedy recursive deletion strategy was then employed to 
filter out the highly redundant features. To curb over-
fitting, the minimum redundancy maximum relevance 
(mRMR) algorithm selected the top 8 features for each 

modality. The final features set was determined using the 
least absolute shrinkage and selection operator (LASSO) 
regression. LASSO adjusted parameter λ to assign zero 
regression coefficients to irrelevant features. Optimal λ 
value selection involved 10-fold cross-validation with 
minimum criteria, aiming for the lowest mean square 
error (MSE).

Signature construction
Several radiomics signatures were formulated based on 
distinct regions: intratumor and ablated area (Intra), 
intratumor with expanded tumor and ablated regions 
(5 mm and 10 mm, Peri-X), intratumor and ablated area 
subregions (Habitat), and intratumor combined with per-
itumoral regions. Additionally, the optimal peritumoral 
region was integrated with the tumor microenvironment 
habitat, termed Habitat + Peri-X. The Clinical signature 
was created from independent risk factors identified via 
multivariate logistic analysis. Commonly used machine 
learning models, including logistic regression (LR), sup-
port vector machine (SVM), K-nearest neighbor (KNN), 
random forest (RF), extremely randomized trees (ExtRa 

Fig. 2 Workflow of radiomics analysis
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Trees), eXtreme gradient boosting (XGBoost), light gra-
dient boosting machine (LightGBM), and multi-layer 
perceptron (MLP), were employed for model construc-
tion. Optimal hyperparameters for each model were 
determined using five-fold cross-validation and the Grid-
search algorithm.

Performance evaluation
The performance of various signatures was verified using 
an independent test dataset, generating receiver operat-
ing characteristic (ROC) curves to calculate the corre-
sponding area under the curve (AUC). The Delong test 
was used to compare predictive performance differences 
among the models [34]. Additionally, accuracy, sensitiv-
ity, specificity, positive predictive value (PPV), and nega-
tive predictive value (NPV) were computed. The Youden 
index determined the optimal cut-off value maximizing 
the sum of sensitivity and specificity [35]. Calibration 
curves were plotted to assess calibration accuracy, along-
side the Hosmer-Lemeshow (HL) test [36] (A significant 
test statistic implies that the model does not calibrate 
perfectly.). Moreover, decision curve analysis (DCA) 
gauged the clinical utility of predictive signatures [37].

Statistical analysis
Statistical analyses were performed using IBM SPSS 
(version 26.0). Continuous variables were presented as 
mean ± standard deviation (SD) and compared using 
the Man-Whitney U test. Categorical variables were 
expressed as counts with percentages and compared 
using the Chi-square or Fisher test. Variables with a 
P-value < 0.05 in univariate regression analysis were 
included in multivariable analysis. Variables with a 
P-value < 0.05 in multivariable analysis were considered 
independent predictors linked to immediate response. 
All statistical tests were two-sided with a significance 
level set at P < 0.05.

Results
Baseline characteristics
The training dataset consisted of 412 lesions (330 CR 
and 82 non-CR) selected via random division, while 103 
lesions (82 CR and 21 non-CR) contributed the inde-
pendent test dataset (Table 1).

Establishment of clinical models
Univariate logistic regression analysis (Table 2) revealed 
significant factors for identifying ablated lesions: CEA, 
CA19–9, concomitant systemic treatment, lung metas-
tases location, and electrode type (P < 0.05). Multivariate 
regression analysis indicated that CA19–9 (odds ratio 
[OR] = 1.002, P < 0.001), concomitant systemic treat-
ment (OR = 0.916, P = 0.042), lung metastases location 

(OR = 1.032, P = 0.019), and electrode type (OR = 0.778, 
P = 0.004) were independent factors influencing ablation 
effect, forming the basis for clinical models construction.

Sub‑region cluster and feature selection
Optimal CH value emerged when tumors were clustered 
into three sub-regions in the entire cohort (Fig.  3). To 
enhance the feature set, features from both pre- and post-
ablation images were fused, resulting in 3668 features. 
Features were extracted via Pyradiomics (http:// pyrad 
iomics. readt hedocs. io).

Radiomics features with non-zero coefficients were 
selected using the LASSO method with the best lambda 
(Supplementary data 3). For habitat-based radiomics sig-
nature, lambda of 0.0095 yielded the best, selecting 71 
features. These comprised 20 habitat features (8 pre- and 
12 post-RFA) and 51 peritumoral features (29 pre- and 22 
post-RFA).

Performance and comparison of signatures
Based on the analysis of prediction performance (Supple-
mentary data 3), the Intra radiomics signature employed 
RF, the Peri-X radiomics signature utilized LightGBM, 
the Habitat radiomics signature was developed using 
ExtRa Trees, while the Habitat+Peri-5 radiomics and 
clinical signatures were constructed with XGBoost.

Summary of predictive performance for clinical and 
radiomics signatures was presented in Table 3 and Fig. 4. 
The clinical signature achieved AUC values of 0.827 
(training) and 0.697 (test), hinting at potentially limited 
generalizability to unseen data. The Peri-5 signature 
outperformed Peri-10 in test AUC, prompting its com-
bination with the Habitat signature. The Habitat+Peri-5 
signature excelled in both training (AUC 0.972) and test 
(AUC 0.846) sets (Fig. 4 a and d). Moreover, calibration 
curves of the Habitat + Peri-5 signature exhibited robust 
concurrence between observed and projected prob-
abilities (Fig.  4 b and e). The HL test yielded insignifi-
cant deviations (training cohort: P = 0.212; test cohort: 
P = 0.283), signifying conformity. DCA portrayed the 
enhanced clinical benefit of the fusion signature over 
other signatures (Fig. 4 c and f ).

Discussion
This study systematically explored the tumor micro-
environment through a comprehensive evaluation of 
intra- and peritumoral regions in pre- and post-abla-
tion CT scans. As a result, we devised predictive signa-
tures for early ablation efficacy in CRC lung metastases 
treated with RFA, leveraging sub-regional radiomics fea-
tures. These signatures provided effective tools for tai-
loring treatment strategies in CRC patients with lung 
metastases.

http://pyradiomics.readthedocs.io/
http://pyradiomics.readthedocs.io/
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Radiomics analysis enables the extraction and char-
acterization of a broad range of information reflecting 
underlying biological diversity in a cost-effective manner 

[12]. A radiomics signature, composed of multiple fea-
tures, serves as a robust prognostic biomarker that could 
complement clinical data [38]. The overestimation of the 

Table 1 Characteristics of patients and CRC lung metastases

CRC  colorectal cancer, CEA carcinoembryonic antigen, CA19–9 cancer antigen 19–9, CR complete response, RUL right upper lobe, RML right middle lobe, RLL right 
lower lobe, LUL left upper lobe, LLL left lower lobe, Distance 1 the distance between the lesion and the great vessels or mediastinum, Distance 2 the distance between 
the lesion and the pleura or diaphragm, IAH intra-alveolar hemorrhage
#  Mean ± SD

Characteristics Training dataset Test dataset P value
(N1 vs  N2)

N1 = 412 CR = 330 Non‑CR = 82 N2 = 103 CR = 82 Non‑CR = 21

Age (years)# 57.91 ± 10.42 57.74 ± 10.37 58.41 ± 10.69 57.48 ± 10.89 58.67 ± 10.81 52.80 ± 9.85 0.59

Gender 0.68

Male 234 184 50 61 48 13

Female 178 146 32 42 34 8

Tumor markers

CEA (ng/ml)# 14.89 ± 44.12 12.48 ± 37.91 27.13 ± 65.92 13.49 ± 20.80 11.50 ± 16.80 20.84 ± 30.89 0.71

CA19–9 (U/ml)# 29.73 ± 56.78 25.41 ± 48.32 51.75 ± 88.38 20.67 ± 30.69 18.91 ± 29.86 27.01 ± 32.95 0.29

Lymphadenopathy at diagnosis 0.03

Yes 282 218 64 61 50 11

No 130 112 18 42 32 10

Concomitant systemic treatment 0.10

Yes 276 231 45 59 47 12

No 136 99 37 44 35 9

Initial tumor location 0.60

Rectum 274 216 58 76 57 19

Sigmoid—left colon 58 50 8 11 10 1

Transverse—right colon 75 60 15 14 13 1

Caecum 5 4 1 2 2 0

Nodule size (mm)# 1.21 ± 0.66 1.12 ± 0.38 1.35 ± 0.42 1.27 ± 0.67 1.20 ± 0.48 1.38 ± 0.71 0.31

Lung metastases location 0.22

RUL 98 87 11 23 19 4

RML 39 32 7 18 16 2

RLL 78 57 21 16 8 8

LUL 94 79 15 22 19 3

LLL 103 75 28 24 20 4

Distance 1 0.28

>  1 cm 340 277 63 79 62 17

<  1 cm 72 53 19 24 20 4

Distance 2 0.08

>  1 cm 161 131 30 49 39 10

<  1 cm 251 199 52 54 43 11

Electrode type 1.00

Expandable 380 310 70 94 76 18

Straight 32 20 12 9 6 3

Pneumothorax 1.00

Yes 115 93 22 28 22 6

No 297 237 60 75 60 15

IAH 0.01

Yes 108 93 15 40 34 6

No 304 237 67 63 48 15
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completely necrotic region as GGO on CT [39] indicates 
the need to ablate peritumoral lung parenchyma within 
5 to 10 mm for complete ablation [9, 40]. Previous stud-
ies have highlighted the utility of combining intra- and 
peritumoral radiomics features for improved treatment 
response prediction [16, 19]. These findings underscore 
the importance of peritumoral features [16–18, 41]. 
Therefore, our study aimed to explore the predictive per-
formance of peritumoral radiomics features by assess-
ing the impact of peritumoral region sizes. The results 

demonstrated that the radiomics signature derived from 
a 5 mm dilated distance outside both the tumor and 
ablated area yielded the highest prediction performance 
compared to the intra- and peritumoral 10 mm regions. 
This signature exhibited high AUC values and low over-
fitting, emphasizing the significance of peritumoral fea-
tures in radiomics and the influence of peritumoral size 
on prediction performance.

The sub-region cluster analysis conducted in this 
study highlighted the importance of sub-region analysis 

Table 2 Uni- and multivariate analysis of clinical and radiological characteristics

OR odds ratio, 95%CI 95% confidence interval, CEA carcinoembryonic antigen, CA19–9 cancer antigen 19–9, Distance 1 the distance between the lesion and great 
vessels or mediastinum, Distance 2 the distance between the lesion and pleura or diaphragm, IAH intra-alveolar hemorrhage. The bold p values in the univariate (*) 
and multivariate analysis (#) mean < 0.05

Characteristics Univariate analysis Multivariate analysis

OR (95%CI) P value OR (95%CI) P value

Age 1.001(0.998–1.004) 0.628

Gender 1.047(0.975–1.123) 0.285

CEA 1.001(1.001–1.002) 0.005* 1.001(1.0–1.001) 0.131

CA 19–9 1.002(1.001–1.002) < 0.001* 1.002(1.001–1.002) < 0.001#
Lymphadenopathy at diagnosis 1.091(1.013–1.175) 0.052

Concomitant systemic treatment 0.895(0.832–0.964) 0.013 0.916(0.853–0.983) 0.042#
Initial tumor location 0.982(0.941–1.026) 0.500

Nodule size 0.956(0.608–1.307) 0.642

Lung metastases location 1.033(1.010–1.015) 0.020* 1.032(1.009–1.005) 0.019#
Distance 1 1.092(0.995–1.198) 0.119

Distance 2 1.006(0.935–1.081) 0.897

Electrode type 0.753(0.652–0.869) 0.001* 0.778(0.675–0.897) 0.004#
Pneumothorax 1.012(0.934–1.096) 0.808

IAH 0.933(0.860–1.013) 0.165

Fig. 3 Calinski–Harabasz score plot. The red dotted line represented the optimal value beyond which the scores started to decrease 
in the radiomics features from CT images before (black line) and after (green line) ablation
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in capturing CRC lung metastases’ tumor heterogene-
ity. By optimizing the number of clusters, we identified 
three spatially distinct habitats through K-means cluster-
ing. These habitats within the ablation area represented 
various characteristics: the inner region possibly indi-
cated necrotic areas, the middle region potentially signi-
fied effusion areas, and the edge region likely represented 

congested areas. These findings were consistent with the 
histopathological results, demonstrating an inner-to-
outer transition [39]. As anticipated, the habitat signa-
ture, derived from radiomics features within these unique 
subregions, contributed valuable information in assessing 
early effects after RFA. Furthermore, by combining habi-
tat and peritumoral signatures, we achieved higher AUC 

Table 3 Performance comparison of all signatures

ACC  accuracy, AUC  the area under the curve, 95%CI 95% confidence interval, PPV positive predictive value, NPV negative predictive value. The bold values mean the 
best performance of the signature integrating habitat and radiomics features of peritumoral 5 mm

Signature ACC AUC 95%CI Sensitivity Specificity PPV NPV Youden Cohort

Clinical 0.777 0.827 0.774–0.879 0.713 0.795 0.483 0.911 0.278 Training

Intra 0.859 0.903 0.867–0.940 0.775 0.882 0.639 0.936 0.252 Training

Peri-5 0.883 0.954 0.934–0.975 0.887 0.882 0.670 0.967 0.236 Training

Peri-10 0.997 0.998 0.995–1.000 0.988 1.000 1.000 0.997 0.375 Training

Habitat 0.748 0.876 0.835–0.917 0.887 0.710 0.452 0.959 0.201 Training

Habitat+Peri-5 0.984 0.994 0.986–1.000 0.950 0.993 0.974 0.987 0.366 Training

Clinical 0.600 0.697 0.564–0.830 0.850 0.541 0.327 0.930 0.193 Test

Intra 0.800 0.769 0.648–0.890 0.650 0.851 0.520 0.900 0.238 Test

Peri-5 0.695 0.825 0.741–0.909 0.950 0.635 0.404 0.979 0.189 Test

Peri-10 0.737 0.816 0.718–0.914 0.850 0.716 0.436 0.946 0.179 Test

Habitat 0.737 0.812 0.721–0.903 0.800 0.730 0.432 0.931 0.212 Test

Habitat + Peri‑5 0.853 0.870 0.786–0.954 0.800 0.867 0.615 0.942 0.274 Test

Fig. 4 The receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) of all signatures in the training 
cohort (a, b, c), and test cohort (d, e, f)
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values (training cohort: 0.972, test cohort: 0.870). This 
outcome validated the superiority of the Habitat+Peri-5 
signature over the Intra radiomics signature (P = 0.039, 
Fig. 5).

Furthermore, multivariate regression analyses identi-
fied several clinical variables, including CA19–9 levels, 
lung metastases location, concomitant systemic treat-
ment, and electrode type. Notably, lung metastases 
location, particularly in the lower lobes, emerged as an 
independent risk factor, possibly due to the influence 
of respiratory movements on accurate probe position-
ing. Conversely, concomitant systemic treatment and 
the use of expandable electrodes were protective factors 
against treatment failure, evident from OR values below 
1. Importantly, the Habitat + Peri-5 signature demon-
strated a significantly improved AUC value (P = 0.020, 
Fig.  5) compared to the clinical model (training cohort: 
0.827, test cohort: 0.697), underscoring enhanced preci-
sion and clinical utility, as supported by the HL test and 
DCA results.

A study by Markich et al. [10] examined clinical, radi-
ological, technical, and radiomics features examined 
before and after RFA to evaluate local control in 48 CRC 
patients with 119 lung metastases. However, their reli-
ance on CT scans taken 48 hours post-ablation hindered 
real-time procedure assessment, delaying timely inter-
ventions. To address this limitation, our recent study 
[42] integrated relative radiomics features from pre- and 
immediate post-RFA CT scans with clinical and radio-
logical variables from 479 lung metastases in 198 CRC 
patients. This aimed to establish a novel multimodal data 

fusion model for evaluating immediate RFA efficacy. Liu 
et  al. [43] explored intratumor density heterogeneity 
changes following microwave ablation (MWA) of pulmo-
nary tumors, utilizing radiomics-based CT features for 
prognostic value in predicting treatment response. Addi-
tionally, Zhu et al. [44] developed intra- and peritumoral 
radiomics models based on post-operative CT images to 
predict early MWA efficacy in malignant lung tumors, 
validating the predictive ability. However, neither study 
explored the optimal peritumoral region nor assessed the 
impact of peritumoral region sizes. Also, the inclusion 
of primary and metastatic lung tumors in both studies 
raised concerns about disease heterogeneity.

This study bears several limitations that warrant 
acknowledgment. Firstly, it was a single-center retrospec-
tive study with a limited sample size. Therefore, a more 
extensive, multi-center prospective study is essential to 
validate the generalizability of our signature and ascer-
tain its utility in clinical settings. Secondly, the spatially 
distinct habitats identified through K-means clustering 
could not be pathologically confirmed due to technical 
challenges and ethical considerations. However, pursuing 
such a correlation might entail unnecessary surgeries.

Conclusion
In summary, this study introduces a pioneering signa-
ture that combines habitat and peritumoral radiomics to 
access immediate response and predict outcomes of RFA 
in CRC patients with lung metastases. The habitat-based 
radiomics signature holds the potential for advancing 
precision medicine and shaping treatment strategies.

Fig. 5 The results of the DeLong test in the training cohort (a), and test cohort (b)
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