
Alaeikhanehshir et al. Cancer Imaging           (2024) 24:48  
https://doi.org/10.1186/s40644-024-00691-x

RESEARCH ARTICLE Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cancer Imaging

Application of deep learning 
on mammographies to discriminate 
between low and high-risk DCIS for patient 
participation in active surveillance trials
Sena Alaeikhanehshir1,2  , Madelon M. Voets1,3, Frederieke H. van Duijnhoven2, Esther H. lips1, Emma J. Groen1, 
Marja C. J. van Oirsouw4, Shelley E. Hwang5, Joseph Y. Lo6, Jelle Wesseling1,7,8, Ritse M. Mann10,9, 
Jonas Teuwen10,11,12,13* and Grand Challenge PRECISION Consortium Steering Group 

Abstract 

Background Ductal Carcinoma In Situ (DCIS) can progress to invasive breast cancer, but most DCIS lesions never 
will. Therefore, four clinical trials (COMET, LORIS, LORETTA, AND LORD) test whether active surveillance for women 
with low-risk Ductal carcinoma In Situ is safe (E. S. Hwang et al., BMJ Open, 9: e026797, 2019, A. Francis et al., Eur J Can-
cer. 51: 2296–2303, 2015, Chizuko Kanbayashi et al. The international collaboration of active surveillance trials for low-
risk DCIS (LORIS, LORD, COMET, LORETTA),  L. E. Elshof et al., Eur J Cancer, 51, 1497–510, 2015). Low-risk is defined 
as grade I or II DCIS. Because DCIS grade is a major eligibility criteria in these trials, it would be very helpful to assess 
DCIS grade on mammography, informed by grade assessed on DCIS histopathology in pre-surgery biopsies, since sur-
gery will not be performed on a significant number of patients participating in these trials.

Objective To assess the performance and clinical utility of a convolutional neural network (CNN) in discriminating 
high-risk (grade III) DCIS and/or Invasive Breast Cancer (IBC) from low-risk (grade I/II) DCIS based on mammographic 
features. We explored whether the CNN could be used as a decision support tool, from excluding high-risk patients 
for active surveillance.

Methods In this single centre retrospective study, 464 patients diagnosed with DCIS based on pre-surgery biopsy 
between 2000 and 2014 were included. The collection of mammography images was partitioned on a patient-level 
into two subsets, one for training containing 80% of cases (371 cases, 681 images) and 20% (93 cases, 173 images) 
for testing. A deep learning model based on the U-Net CNN was trained and validated on 681 two-dimensional 
mammograms. Classification performance was assessed with the Area Under the Curve (AUC) receiver operat-
ing characteristic and predictive values on the test set for predicting high risk DCIS-and high-risk DCIS and/ or IBC 
from low-risk DCIS.

Results When classifying DCIS as high-risk, the deep learning network achieved a Positive Predictive Value (PPV) 
of 0.40, Negative Predictive Value (NPV) of 0.91 and an AUC of 0.72 on the test dataset. For distinguishing high-risk 
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and/or upstaged DCIS (occult invasive breast cancer) from low-risk DCIS a PPV of 0.80, a NPV of 0.84 and an AUC 
of 0.76 were achieved.

Conclusion For both scenarios (DCIS grade I/II vs. III, DCIS grade I/II vs. III and/or IBC) AUCs were high, 0.72 and 0.76, 
respectively, concluding that our convolutional neural network can discriminate low-grade from high-grade DCIS.

Highlights 

• Artificial intelligence could play a role in discriminating high- from low-risk DCIS.

• The developed CNN could fairly discriminate high- from low-risk DCIS and/or IBC.

• The NPV 0.84 may be clinically relevant for DCIS active surveillance trials.

Keywords DCIS, DCIS grade, Invasive breast cancer, Active surveillance, Artificial intelligence, Deep learning

Key finding
• An AUC of 0.72 was achieved on the test-set, with a 
PPV 40.3%, a NPV of 90.9%. In the upstaged scenario, 
thus low-risk DCIS versus high-risk DCIS and/or IBC, 
the AUC increased to 0.76 in the test set, with a PPV of 
80.0% and NPV value of 83.9%.

Importance
•  The CNN could be a supportive tool in combination 
with other clinicopathological factors, to personalize 
treatment in patients with DCIS.

Introduction
At present, about 20% of all newly screen-detected ‘breast 
cancers’ are in fact Ductal Carcinoma In Situ (DCIS) [1, 2]. 
DCIS is an intraductal proliferation of neoplastic cells with 
the absence of invasion into surrounding stromal breast 
tissue. Nonetheless, some DCIS lesions advance to inva-
sive breast cancer (IBC) when left untreated [3–6]. Only a 
minority (~ 10%) of the DCIS lesions cause clinical symp-
toms (i.e. palpable mass, or bloody nipple discharge). The 
majority of DCIS is therefore detected on screening mam-
mography, by the identification of associated calcifications 
(~ 90%) [7–10].

Since DCIS is considered to be a potential precursor 
of IBC, treatment of DCIS should prevent women from 
progression of DCIS to IBC. As a result, over the last 
decades, women with DCIS have been treated by breast-
conserving surgery, often followed by radiotherapy, or 
even mastectomy, in some countries regularly supple-
mented with endocrine treatment. As the incidence of 
advanced stages of IBC has not decreased, however, the 
current therapeutic approach for screen-detected DCIS 
consists, at least partly, overtreatment [11, 12].

Currently, four active surveillance trials (COMET, 
LORIS and LORD, LORETTA–trial) [13–16] are evaluat-
ing the safety of active surveillance for low-risk, defined 
as grade I or II DCIS and, for the LORD-trial, being 
estrogen receptor positive and HER2-negative as well. 

So, grade is an essential eligibility criterium for the active 
surveillance trial, as it is a strong predictor of prognosis 
[15, 17, 18], indicating the importance for appropriate 
differentiation in DCIS grade.

If these active surveillance trials indeed show that it is 
safe to leave low-risk DCIS in situ, it would be beneficial 
to determine the grade of DCIS based on mammography 
since histopathological diagnosis will be based on biopsy 
only in active surveillance patients. It may thus not prop-
erly document the heterogeneity within the lesion based 
on a limited tissue sample from the biopsy only, and may 
miss higher grade areas or invasive foci. However, radi-
ologists have so far not been able to adequately predict 
occult invasive disease when DCIS presents as calcifica-
tions, let alone determine the grade of eventual DCIS 
from the appearance of calcifications [19, 20]. A recent 
study showed that radiologists were able to predict inva-
sive disease when DCIS presents as calcifications bet-
ter than chance, where accuracy increased particularly 
for smaller DCIS lesions (< 2 cm) and after exclusion of 
microinvasive disease [21]. However, this not consistent 
enough to rely on in daily clinical practice.

As there are clear indications that the shape and dis-
tribution of the calcifications are associated to the 
aggressiveness of the lesion [10, 22, 23] the inability of 
radiologists to distinguish between high- and low-risk 
DCIS may be due to the large inter-rater variability of 
both radiologists and pathologists [24–27]. For exam-
ple, observers generally agree on the presence or absence 
of a mass or calcifications but disagree on calcification 
descriptors [24, 28–32]. More importantly, calcification 
descriptors are associated with DCIS grade. However, 
large reader variability excists in reporting calcification 
descriptors, making it challanging for radiologists to 
report DCIS grade based on these calcification descrip-
tors [19, 20]. For instance, Roos et  al. found that inear 
microcalcifications were significantly associated with 
high grade DCIS, while presence of fine granular calcifi-
cations was more often associated with lower grade [20].
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Available Computer-Aided Detection (CADe) and 
Computer-Aided Diagnosis (CADx) algorithms were 
developed to support radiologists in assessment of 
mammograms. Several studies have been performed 
using CADe and CADx for calcification segmentation 
and detection on mammography [33–36], mainly to 
prevent overlook errors of radiologists. Other studies 
using CADe/CADx more specifically evaluated DCIS 
[37–39], focusing on segmentation of calcifications and 
prediction of occult invasive disease with DCIS [40].

Image analysis enhanced with artificial intelligence 
can be categorized into two approaches which trans-
form imaging information into mineable data [41, 42]. 
Both approaches have the same underlying concept of 
identifying and encoding simple patterns and many 
higher-order patterns of imaging features that are 
not visible with the naked eye. These features can be 
extracted from biomedical images (i.e. mammography) 
and be linked with clinical variables of interest (i.e. 
patient characteristics, clinical outcomes, tumor grade 
and tumor stage), enabling improved decision sup-
port [41, 42]. Generally, CAD systems use handcrafted 
features coupled with imaging features extracted with 
machine learning, to identify a phenotypical finger-
print. On the contrary, a CNN, which is a deep learn-
ing method, based on a complex network, inspired by 
the human brain architecture, is able to learn high-
level features automatically from obtained images such 
as mammographies [43, 44]. Predicting tumor grade by 
utilizing a CNN on biomedical images have been stud-
ied earlier. For example, a study evaluated the diagnos-
tic performance of a CNN for bladder cancer grading. 
The CNN was able to predict tumor grade based on 
tumor color, and achieved an accuracy of 94.1% to 
distinguish between low-grade and high-grade tumor 
using white light images [45]. In addition, another 
study predicting grade using a CNN, achieved accu-
racy of 90% in classifying meningioma grades based on 
MRI images [46].

In pursuit of reducing overtreatment of DCIS patients, 
the current study aims to identify a series of system-
atic differences in imaging characteristics by utilizing a 
CNN, and to investigate whether the CNN was able to 
separate high-risk from low-risk DCIS, and to improve 
the discrimination of DCIS with and without invasive 
components. To bridge the gap between daily clini-
cal practice and risk of overtreatment of DCIS, a CNN 
might be a substantial support to clinicians. Therefore, 
we explored whether the CNN could be used as a deci-
sion support tool in order to facilitate active surveil-
lance in patients with biopsy proven DCIS eligible for 
active surveillance trials.

Methods and materials
Patient selection
The current study population consists of women, aged 18 
years or older, diagnosed with DCIS between 2000 and 
2014 whose initial biopsy was performed at the Neth-
erlands Cancer Institute – Antoni van Leeuwenhoek 
Hospital or who were referred to the Netherlands Can-
cer Institute – Antoni van Leeuwenhoek Hospital for a 
second opinion. Patients were eligible if pure DCIS was 
diagnosed on initial biopsy (vacuum 9G or core-needle 
biopsy 14G, the cases in this study have been collected 
over a long span of time and historical cases with 14G 
sampling have been included), and the pre-biopsy digital 
mammogram (Full-Field Digital Mammography, FFDM) 
was available, both screen and non-screen detected 
patients were included. Patients were excluded if lobular 
carcinoma in situ was reported, or when there was sus-
picion for, or evidence of, IBC on pre-surgery biopsy, or 
when there was a visible mass or architectural distortion 
on mammography. In this dataset all patients underwent 
definitive surgery. According to the Dutch guidelines 
patients with DCIS do not receive neoadjuvant hormone 
therapy or chemotherapy. Initially 606 DCIS patients 
were identified. A total of 142 patients were excluded 
for the following reasons: mammography not available 
(n = 111), insufficient quality of the obtained mammogra-
phy and/or presence of radiological mass (n = 31). Ultra-
sound is routinely used to identify disease suspicious 
for invasion / solid high-risk DCIS, considering that 
patients with a mass were excluded, no data regarding 
ultrasounds was collected. After exclusion, 464 patients 
were eligible and included in this study, representing 854 
unique images (392 Mediolateral-Oblique (MLO)and 386 
CranioCaudal (CC) view, 76 other; i.e. true lateral views 
(ML and LM views), exaggerated craniocaudal views 
(XCCL), rolled lateral (RL), tangential (TAN) and lesion 
localization (LL) views). Magnification views were not 
included for analysis (Fig. 1).

Data pre‑processing and augmentation
Clinical information including patient age, localiza-
tion, lesion size, and grade of primary DCIS lesion were 
extracted from the electronic patient record. Biopsies 
showing DCIS were selected through the Netherlands 
nationwide registry of histology and cytopathology 
records (PALGA) [47] and through the regional tumor 
registry at the Netherlands Cancer Institute—Antoni 
van Leeuwenhoek Hospital (NKI–AVL). These pre-
surgical biopsies were either performed at NKI–AVL 
or were taken at another hospital and sent for routine 
second opinion to NKI–AVL. Information regarding 
localization, including approximate site, was used to 
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manually annotate the calcified regions on the mam-
mograms. In case of multiple groups of calcifications, 
the whole area was annotated. However, in case of mul-
tiple separate calcifications clusters, the cluster that 
was described in the radiology report as the biopsied 
area was annotated. In case of extensive calcifications 
the whole area was annotated. All calcified regions were 
manually annotated by two trained readers on the full 
image (SA: MD, MM: Technical Medicine researcher), 
supervised by a dedicated breast radiologist (RM) 
using 3D Slicer, version 4.10.2. Mammographies were 
split on a patient level and calcified regions were anno-
tated once by one of the two trained readers, the two 
readers did consult each other if needed. Training and 
test sets were split randomly and stratified for grade. 
Study approval was granted by the IRB of our institute, 
19.050/IRBd19016.

The histopathological report after surgical resec-
tion was considered the ground truth and accordingly 
patients were separated in pure low-risk DCIS (grade I/
II) and grade III DCIS and/or invasive disease groups.

Before feeding images into the neural network, sev-
eral augmentation operations were applied. Each image 
had one of the DICOM lookup tables provided by the 
vendor randomly applied and was subsequently linearly 
rescaled to the range [0, 1]. Subsequently, the images 
were cropped to a shape of 1024 × 1024 around the 
center of the lesion which was randomly perturbed by 
at most 150 pixels in both directions. Other data aug-
mentations were a random horizontal flip (p = 50%), 
a random gamma transform with gamma parameter 
between 0.95 and 1.05, and finally, Gaussian additive 

noise was applied with a magnitude which was at most 
5% of the pixel intensity value.

Network architecture
 A novel fully convolutional neural network (fCNN) was 
designed to combine both segmentation of the lesion and 
image-level classification. The proposed network is based 
on the well-known U-Net architecture, first described by 
Ronneberger [48], which is an encoder-decoder archi-
tecture. In addition, we attached an extra convolutional 
branch at the bottleneck to perform classification into 
grade I/II or grade III DCIS /invasive breast cancer. The 
U-Net part of the complete network is of depth five, 
where each block in the encoder path consists out of a 
block containing convolutions, followed by a rectified lin-
ear unit (ReLU) and a max pooling operation for down-
sampling. During upsampling in the decoder pathway of 
the network, the max pooling operations were replaced 
by bilinear interpolation operations. The downsampling 
and upsampling pathways shared information using skip-
connections by combining the low-level yet high-resolu-
tion features from the encoder pathway with the location 
information of the decoder pathway to compute global 
information and provide the network with the ability to 
compute high-resolution segmentation masks. The final 
segmentation output is generated resulting from a set of 
three final convolution operations see Fig. 2.

The classification branch of the network is con-
structed to classify the original input image as low-risk 
or high-risk DCIS. Connected at the final layer of the 
encoder, the classification branch consists of a single 
convolution followed by a double convolutional block 

Fig. 1 Flow-chart patient inclusion. DCIS, Ductal Carcinoma in Situ. Included patients were those diagnosed with DCIS between 2000 
and 2014 whose initial biopsy was performed at the Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital or who were referred 
to the Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital for a second opinion
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and a final output convolutional layer. The classifica-
tion of the input image is provided by a softmax func-
tion [49].

The final loss was the sum (equally balanced) of the 
segmentation and classification loss. The total loss con-
sisted of the sum of the focal loss function for the image 
classification, and a top-k cross entropy to compute the 
loss of the segmentation branch. The difference between 
a normal cross-entropy loss and the top-k cross entropy 
loss is that only for the top-k worst classified pixels the 
loss is computed and backpropagated.

To train the network we used the Adam optimizer 
with a starting learning rate of 0.00025, where each 
150 iterations, the learning rate was decreased by a 
factor of 0.5. We have selected the batch size to maxi-
mize the GPU memory usage and have adapted the 
learning rate accordingly’ For our hardware this led to 
a batch size of 16.

The collection of mammography images was parti-
tioned on a patient-level into two subsets, one for train-
ing containing 80% of cases (371 cases, 681 images) and 
the remaining 20% (93 cases, 173 images) for testing. 
The training subset was further divided into five folds, 
each fold containing a random selection of 80% of the 

patients for training and the other 20% for validation, see 
Fig.  3. The final prediction was the average of the com-
bined MLO and CC view output probabilities of the same 
patient.

Fig. 2 U-Net architecture with the segmentation and classification branches. Using mammography images as input, the segmentation branch 
is used to for segmentation of calcifications, whilst the classification branch is used to distinguish low-risk from high-risk DCIS

Fig. 3 Overview of data partitioning
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Statistical analysis
To evaluate the performance of the network in segment-
ing and classifying the image, we used the dice similarity 
coefficient (DICE) and the area under the receiver opera-
tor characteristic (AUROC) [50], respectively. Given an 
input image, the network produces a probability to which 
different discrimination thresholds were applied in order 
to predict class membership, reflected in the ROC curve. 
The clinical translation of the AUC values are as follows; 
a higher AUC value corresponds with a greater accuracy 
in predicting high-risk (grade III) DCIS. In the scenario 
where upstaging to invasive disease was evaluated by the 
CNN, a higher AUC value translated a greater accuracy 
in predicting high-risk (grade III) DCIS, and/or the pres-
ence of invasive disease. The final surgical specimen was 
the leading diagnosis as incorporated in the CNN model. 
In addition, positive predictive value (PPV) and negative 
predictive value (NPV) were calculated as secondary per-
formance metrics to assess the performance of the classi-
fier. Positive indicated DCIS that was upgraded to higher 
(III) grade DCIS and / or upstaged to invasive cancer at 
the time of surgery. Negative corresponded to pure DCIS 
without upstaging or upgrading to higher grade DCIS. 
It was assumed that from a likelihood of 0.5 for high-
grade and/or invasive disease watchful waiting would 
be deemed too dangerous, hence NPV and PPV were 
calculated using this threshold. To this end we trained 
and tested the network to evaluate whether it was able 
to classify DCIS grade, in order to explore whether it is 
feasible that the network could be applied as an support 
decision tool next to classical histopathological assess-
ment of DCIS grade. Training and testing of the network 
was performed on a NVIDIA Tesla T4 GPU (Nvidia Cor-
poration, Santa Clara, California, United States). The 
deep learning network was implemented using Pytorch 
1.5 and Python 3.7.

Results
The median age of the included patients was 54 years 
(interquartile range 49–62) and approximately half 
(51.9%) of the patients were post-menopausal at diagno-
sis. Furthermore, over half (53.9%) of the DCIS lesions 
were detected during population screening. Mean lesion 
size was 29.8 mm, and approximately 70% of the patients 
had a low-risk DCIS lesion (grade I/II). Among those for 
whom information was available 225 (48.5%) patients 
were diagnosed using a 9G vacuum-assisted biopsy 
and 92 (19.8%) using a 14G core-needle biopsy, for 147 
(31.7%) patients the method of biopsy that was used was 
unknown. A total of 47 (14.2%) patients were upgraded 
to an higher grade DCIS based on the final surgical exci-
sion specimen. Seventeen (36.2%) patients with grade 

I DCIS on biopsy were grade II DCIS on surgical resec-
tion specimen, two (4.3%) patients with grade I DCIS on 
biopsy had grade III DCIS on resection specimen and 28 
(59.5%) patients had initially grade II DCIS on biopsy but 
grade III DCIS on final excised specimen. When sub clas-
sifying according to low and high-risk DCIS, 30 (63.8%) 
patients who had a primary diagnosis of low-risk (grade 
I/II) DCIS, were upgraded to high-risk DCIS upon exam-
ination of final surgical excision specimen. Additionally, 
68 (14.7%) patients were upstaged, meaning that these 
patients harbored occult invasive disease, initially not 
diagnosed on pre-surgical biopsy, but determined on 
final surgical specimen. Of these 68 upstaged patients, 
46 (67.6%) patients were initially diagnosed as low-risk 
(grade I/II) DCIS, whereas 22 (32.4%) patients who were 
upstaged, had an initial diagnosis of high-risk (grade III) 
DCIS. Table  1 shows patient and tumor characteristics 
(Fig. 4).

The 464 included patients yielded 854 mammograms 
which were used for our fCNN algorithm. The network 

Table 1 Patient and tumor characteristics (n = 464)

a Including 110 diagnosed during follow-up for a previously treated breast lesion 
and 51 referred for routine second opinion

Age at diagnosis n (%)

 20–49 146 (31.5)

 50–59 186 (40.1)

 50–69 96 (20.7

 70+ 36 (7.8)

Median (interquartile range) 54 (49–62)

Menopausal status
 Pre-menopausal 121 (26.1)

 Peri-menopausal 40 (8.6)

 Post-menopausal 241 (51.9)

Unknown 62 (13.4)

Method of detection
 Screen-detected 250 (53.9)

 Symptomatic 53 (11.4)

Unknowna 161 (34.7)

Lesion size (mammography, mm)
 0–19 158 (34.1)

 20–50 109 (23.5)

 ≥ 50 79 (17.0)

unknown 118 (25.4)

Mean (± standard deviation) 29.8 (25.2)

Grade (based on surgical specimen)
 I 139 (30.0)

 II 193 (41.6)

 III 132 (28.4)

Upstage to IBC
 Yes 68 (14.7)

 No 396 (85.3)
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was trained using five folds for 500 epochs each. In the 
pure DCIS cases (thus excluding the upstaged cancers) 
where we aimed to discriminate low-risk DCIS from 
high risk, there were 93 cases in the test set. Overall, an 
AUC of 0.72 was achieved on the test-set, corresponding 
with a positive predictive value 40.3%, a negative predic-
tive value of 90.9%. In the upstaged scenario, thus low-
risk DCIS versus high-risk DCIS and/or IBC, the AUC 
increased to 0.76 in the test set. In this scenario a positive 
predictive value of 80.0% and a negative predictive value 
of 83.9% were determined. See Fig. 5 for ROC curve and 
AUC classification.

Discussion
This study demonstrated that it is feasible to discrimi-
nate high- from low-risk DCIS, by applying a deep learn-
ing network on pre-surgical mammographies showing 
only calcifications. After external validation, the network 
could be applied as an extra decision support tool in 
patients opting for participation in the active surveillance 
trials. Thus, offering further refining of clinical decision 
making and treatment planning, together with the classi-
cal histopathological assessment of DCIS grade.

For network optimization, the network was first 
trained as a stand-alone U-Net architecture for the image 

Fig. 4 Improvement of calcification segmentation for different eppochs: Demonstratinghow the segmentation performance by the network 
improved during training, Fig. 4a gives an example of a ground-truth annotation that was used to train the network. A clear improvement 
in segmentation performance can be seen in Fig. 4b-d, where in the beginning stages of training (Fig. 4b), the network did not include all 
calcifications. However, a more extensive and smoothly coverage of the calcifications can been seen as the data is further processed, Fig. 4c and d. a 
ground truth anotation. b DSC=0.706, 24 epochs. c DSC=0.721, 46 epochs. d DSC=0.740, 50 epochs

Fig. 5 Test-set, ROC curve AUC. a Classification of low-risk (grade I/II) DCIS vs high-risk (grade III) DCIS. b Classification of low-risk (grade I/II) DCIS vs 
high-risk (grade III) DCIS and/or IBC
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segmentation task only. During optimization, the net-
work parameters were tuned to maximize dice scores 
estimated on the validation set. With the best performing 
parameters, the classification branch was added to train 
the network for the classification task. This classifica-
tion task achieved an AUC of 0.72 on the test-set, which 
excluded the upstaged cases. Positive predictive value 
was 40.3% and negative predictive value was 90.9%. In 
the clinically more realistic scenario where the upstaged 
cases were included the AUC was even higher, at 0.76, 
with a positive predictive value of 80.0% and a negative 
predictive value of 83.9% based on the used cut-off. Our 
results show that the network could discriminate high-
grade from low-grade DCIS. More importantly, the dem-
onstrated NPVs are clinically relevant considering the 
relative low risk of including a high-risk DCIS patient for 
active surveillance.

Previous studies investigating mammographic image 
data to predict the presence of occult invasive breast dis-
ease next to the presence of DCIS demonstrated good 
performances [39, 40, 51, 52]. In one study where deep 
features were extracted from digital mammograms using 
deep convolutional network, pre-trained on non-med-
ical images, to predict the presence of occult invasive 
disease in patient with DCIS, an AUC of 0.70 (95% CI, 
0.68–0.73) was achieved, which is comparable with the 
current study [51]. However, the main aim of the current 
study was to develop a CNN that is also able to differ-
entiate low-risk (grade I/II) DCIS from high-risk (grade 
III) DCIS and invasive disease. The demonstrated nega-
tive predictive values of 90.9 and 83.9% are promising in 
guiding patients who are opting for active surveillance. 
The network could be applied as an extra safety measure 
before inclusion in active surveillance trials, where it can 
be utilized for definitive grading of DCIS. The most likely 
clinical scenario for our classifier is the scenario where 
upstaging is possible, as we would apply it on pre-surgical 
mammograms, where occult invasive disease could be 
present.

This study has several limitations and strengths. First, 
the main aim of this study has been the successful clas-
sification of calcifications on mammograms. Major 
inclusion criteria for the active surveillance trials is that 
the DCIS is detected by screening, in this cohort screen-
detected status could be confirmed in only 54%. However, 
an additional 51 patients were referred to our hospital for 
a routine second opinion and while the majority of these 
patients likely also had screen-detected DCIS, we cannot 
exclude other means of detection. Thereby, the distribu-
tion of DCIS grade in the current study is different com-
pared to an earlier study [53] performed by our research 
group. Meaning that the current study is less reflective of 
a true screen-detected cohort of DCIS patients. Another 

limitation is that the manual calcification labeling was 
not performed by radiologists, but by trained research-
ers. Although intensively supervised by a dedicated 
breast radiologist, this might have affected the quality 
of labeling. Nevertheless, as the segmentation is merely 
meant as a proxy task for the classification, the impact of 
an non-perfect segmentation model is minor. In practice, 
a significant inter-rater variability is also seen when radi-
ologists perform this task [24]. Also, we did not perform 
a risk-benefit analysis to demonstrate the performance 
of the CNN compared to traditional biopsies for DCIS 
grade assessment or upstage rate. However, to facilitate 
active surveillance for DCIS patients, we explored the 
feasibility of the CNN as an extra safety measurement in 
addition to the classical histopathological assessment of 
DCIS grade and upstage rate. Therefore we believe that 
the clinical application of our CNN could only be applied 
after external validation and ideally with a risk-benefit 
analysis comparing the accuracy of the CNN with biop-
sies. A strength of this study is, that to our knowledge 
this is one of the largest datasets available to address the 
specific research question of identifying and classifying 
the grade of DCIS based on image features alone. How-
ever, this remains a relatively small data set with almost 
half the cases entered twice (CC and MLO). Further-
more, our CNN incorporated the segmentation and the 
classification in one neural network. Thereby we demon-
strated high AUC of 0.72 for DCIS low-risk versus high-
risk, and even a higher AUC of 0.76 for low-risk versus 
high risk DCIS and/or IBC.

Conclusion
In conclusion our AUC for both models were high and 
we conclude that our CNN is a good discriminator of 
high- and low-grade DCIS. Furthermore, by adding the 
occult IBC to the CNN, we achieved even a higher AUC 
of 0.76, which is clinically relevant considering the shift 
in treatment strategy for low-risk DCIS. Following con-
firmation of the CNN in another independent dataset 
it could be a supportive tool in combination with other 
clinicopathological factors to offer personalized treat-
ment in patients with DCIS.
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