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Abstract
Background Automatic segmentation of hepatocellular carcinoma (HCC) on computed tomography (CT) scans is 
in urgent need to assist diagnosis and radiomics analysis. The aim of this study is to develop a deep learning based 
network to detect HCC from dynamic CT images.

Methods Dynamic CT images of 595 patients with HCC were used. Tumors in dynamic CT images were labeled by 
radiologists. Patients were randomly divided into training, validation and test sets in a ratio of 5:2:3, respectively. We 
developed a hierarchical fusion strategy of deep learning networks (HFS-Net). Global dice, sensitivity, precision and 
F1-score were used to measure performance of the HFS-Net model.

Results The 2D DenseU-Net using dynamic CT images was more effective for segmenting small tumors, whereas 
the 2D U-Net using portal venous phase images was more effective for segmenting large tumors. The HFS-Net model 
performed better, compared with the single-strategy deep learning models in segmenting small and large tumors. In 
the test set, the HFS-Net model achieved good performance in identifying HCC on dynamic CT images with global 
dice of 82.8%. The overall sensitivity, precision and F1-score were 84.3%, 75.5% and 79.6% per slice, respectively, and 
92.2%, 93.2% and 92.7% per patient, respectively. The sensitivity in tumors < 2 cm, 2–3, 3–5 cm and > 5 cm were 72.7%, 
92.9%, 94.2% and 100% per patient, respectively.

Conclusions The HFS-Net model achieved good performance in the detection and segmentation of HCC from 
dynamic CT images, which may support radiologic diagnosis and facilitate automatic radiomics analysis.
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Introduction
Hepatocellular carcinoma (HCC) is the sixth most 
common cancer and the fourth leading cause of can-
cer-related death in the world [1]. Dynamic computed 
tomography (CT) scan plays an important role in the 
diagnosis, staging and treatment decision of patients 
with HCC [2]. However, it requires professional and 
experienced radiologists to interpret hundreds slices of 
CT images per patient to detect HCC and determine the 
stage by measuring the size and number of HCC. After 
long working time, reading fatigue may lead to ineffi-
ciency of work, miss diagnosis, and even harm to physical 
and mental health [3]. Therefore, the artificial intelligence 
(AI)-assisted automatic detection and segmentation of 
HCC from dynamic CT images is in urgent need to assist 
radiologists. Besides, radiomics information from CT 
images may also have implication in predicting cancer 
outcomes [4]. Our recent study showed that by incorpo-
rating radiomic features in AI-derived prediction model 
could improve the prediction accuracy of HCC recur-
rence after resection [5]. The automatic segmentation of 
HCC may facilitate automatic radiomic analysis for AI-
derived prediction models.

In the past, some studies have proposed automatic 
segmentation methods for liver tumors, but most of the 
studies used small datasets and only portal-venous phase 
CT images, which may not be sufficient to develop an 
accurate AI-detection model [6–13]. In clinical prac-
tice, radiologists read dynamic CT images including 
non-contrast, arterial, and portal-venous phase images 
slice-by-slice during interpretation. Due to the diverse 
heterogeneity of HCC, feature extraction methods and 
network architectures are important issues to such a dif-
ficult task. Model-based methods relied on handcrafted 
or non-handcrafted features of the image. With suffi-
cient data and computational capability, deep learning 
may extract non-handcrafted features with better repre-
sentation capability. Due to the powerful ability of deep 
learning, it could be easy to have overfitting by a single 
model. Using models of different learning strategies on a 
specific task in the method to collaborate might be a way 
to avoid the overfitting problem. The aim of this study is 
to develop a deep learning based network with multiple 
strategies for detection and segmentation of HCC from 
dynamic CT images.

Materials and methods
Patients
This study was approved by the Institutional Review 
Board, Taipei Veterans General Hospital, which complied 
with standards of the Declaration of Helsinki and current 
ethical guidelines. Due to the retrospective nature of the 
study, the Institutional Review Board waived the need for 
written informed consent. The identifying information 

of the enrolled subjects has been delinked and therefore 
authors could not access the information.

From October 1, 2007 to August 31, 2019, 884 consecu-
tive HCC patients receiving surgical resection and radio-
frequency ablation (RFA) in Taipei Veterans General 
Hospital with available CT images before treatment were 
retrospectively screened. The inclusion criteria were: (1) 
Age ≥ 20 years; (2) Available CT image within 3 months 
prior to surgical resection or RFA; (3) No other loco-
regional treatment prior to surgical resection or RFA. 
Patients were excluded by the following criteria: (1) with-
out complete dynamic contrast-enhanced CT (CECT) 
images including non-contrast phase, arterial phase and 
portal venous phase (n = 87); (2) poor image quality or 
unable to align the dynamic CT images according to the 
Z-axis (n = 202). Finally, 595 HCC patients with complete 
dynamic CECT images were enrolled in this study. HCC 
was diagnosed before surgery or RFA by CECT or mag-
netic resonance imaging (MRI), which fulfilled the diag-
nostic criteria of the American Association for the Study 
of Liver Diseases (AASLD) treatment guidelines for HCC 
[14] or was confirmed pathologically after surgery and 
RFA.

CECT image segmentation
The image acquisition protocols of CT scanners involved 
in the present study are shown in Table S1. Interpretation 
and tumor segmentation of all CECT images of the 595 
patients were performed by three radiologists who were 
blinded to the clinical and pathological data. The label-
ing of the HCC in dynamic CT images included the non-
contrast phase, arterial phase and portal-venous phase. 
The three radiologists had read > 2,000 liver CT studies 
per year for at least 5 years. When contouring the tumor, 
the edge of the observed focal lesion within the liver was 
defined as an imaging appearance that is distinctive from 
the background according to the Liver Reporting and 
Data System (LI-RADS) [2, 15]. The contours of the liver 
were also labelled in 200 cases for training of segmenta-
tion of the liver. For evaluation of the HFS-Net model, 
ground truth tumor compartments were delineated 
manually. This was performed using a semiautomatic 
approach with subsequent manual editing (IntelliSpace 
Discovery; Philips Healthcare, Netherlands), performed 
by the three experienced radiologists [5].

CT image processing
The characteristics of the CT image dataset were shown 
in Table  1. The original CT images were all 3D images 
stacked by 512 × 512 2D slices. Before the experiment, 
this study used downsampling to reduce all slices into 
a size of 256 × 256 and adjusted all CT image scale to 
1 pixel equal to 1.4  mm. We aligned the dynamic CT 
images according to the Z-axis coordinates of the slices 
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and superimposed them into a three-channel image for 
use. After alignment, 24,810 images (a total of 74,430 
slices) were enrolled for analysis.

Study design for HFS-Net
To design the best architecture of HFS-Net for HCC 
detection and segmentation, an ablation study was first 
conducted for evaluating various architectures of deep 
learning models. We randomly selected 491 cases from a 
total of 595 patients with a broad distribution of various 
tumor sizes was conducted for the ablation study.

The whole dataset was used to design and evaluate 
HFS-Net, which was randomly divided into non-over-
lapping training, validation, and test datasets in a 5:2:3 
ratio. The training, validation, and test sets have 298, 118, 
and 179 patients, respectively. Each patient had a differ-
ent number of slices and all were analyzed. The training 
set is used for constructing the HFS-Net model, while 
the validation set is used for tuning and optimization of 
model parameters. We then evaluate the performance of 
the HFS-Net model on a separate test set. HFS-Net was 
expected to combine the best sub-models by thorough 
evaluation of the candidate sub-models.

Therefore, the splitting strategy of the data and the 
construction of the model are independent in the two 
stages, and the purposes in the two stages are different. 
There is no comparison between the experimental results 
from the two stages, and the constructed models in the 
ablation experiments are not used in the final HFS-Net 
model. Instead, it uses the conclusions drawn from the 
ablation experiments as the background knowledge for 
model construction.

Ablation study design for HFS-Net development
The ablation study investigates the performance of the 
proposed AI system HFS-Net by evaluating certain sub-
models to understand the contribution and tolerance of 
the sub-models to the overall system. This study aims to 
discern the individual and combined strength of various 
sub-models in various scenarios. The influencing factors 
of system performance include architectures (U-Net, 
DenseU-net, Hyper-DenseU-Net, and R2U-Net), phases 
(non-contrast, arterial, portal-venous, and dynamic 
phases), loss functions (cross entropy, focal loss, median 
frequency balance, and dice loss), tumor sizes (the lon-
gest tumor axes in slices), assessment (dice score for 

model’s segmentation ability and tumor detection rate) 
and the fusion strategy.

The final stage of the HFS-Net design involves a com-
parison between 2D HFS-Net and the more compre-
hensive 3D HFS-Net. 2D HFS-Net leveraged the initial 
stages of hierarchical architecture and 2-D spatial fea-
tures, while 3D HFS-Net incorporates a complete hier-
archical architecture with fusion strategy and 3-D spatial 
features. This comparison helps to thoroughly evaluate 
the impact of hierarchical structures and fusion strategies 
to enhance the segmentation and detection of HCC.

Neural network architecture of HFS-Net
Figure 1 showed the data flow of our proposed HFS-Net 
method for liver and tumor detection and segmentation 
according to results of the ablation study. We cascaded 
five sub-models trained by different learning strategies 
(Table  2). HFS-Net consisted of three stages based on 
U-Net and DenseU-Net. The first stage of HFS-Net is the 
liver and tumor segmentation with tumor size estimation 
using 2D DenseU-Net, where every slice of the entire 
CT scan case was taken as input. The second stage is the 
divide-and-conquer stage. According to the tumor size 
calculated in the first stage, the tumors with the longest 
axis less than or equal to m pixels in the slice are assigned 
to the smaller tumor group, and those with more than m 
pixels are assigned to the larger tumor group. This study 
uses m = 30 pixels as the demarcation point, which is 
about 4.2 cm. In the divide-and-conquer stage, we use a 
customized model to adaptively segment large and small 
tumors in slices. For small-tumor groups, 2D DenseU-
Net uses dynamic CT images to segment tumors, and 
for large-tumor groups, 2D U-Net uses portal-venous 
phase CT images to segment tumors. The third stage is 
the fusion strategy stage. This stage integrates the portal-
venous phase CT image, the outcomes of the previous 
two stages and the segmentation of   the liver, and uses 3D 
U-Net to segment the final result of the 3D liver tumor. 
The detailed modeling and learning strategies of HFS-
Net are described in Supplementary Methods.

Evaluation of the performance of the HFS-Net model
We used dice per case and dice global of Jaccard similar-
ity as metrics to evaluate the performance of segmenta-
tion. Dice per case represents the average dice of the case, 
and dice global is the dice score that combines all the 

Table 1 Characteristics of the hepatocellular carcinoma
Dataset Case number Tumor size (cm) Tumor number BCLC stage

< 2 2–3 > 3–5 > 5 1 > 1 0 A B
All 595 93 133 178 191 500 95 83 440 72
Training 298 42 78 81 97 245 53 38 220 40
Validation 118 18 27 45 28 104 14 14 95 9
Test 179 33 28 52 66 151 28 31 125 23



Page 4 of 10Lee et al. Cancer Imaging           (2024) 24:43 

slices as a case to calculate. We used sensitivity, precision, 
and F1-score to evaluate detection performance. When 
evaluating the performance of detection, the criterion 
for successful detection is defined as the dice global that 
overlaps the model results with the corresponding tumor 
labels exceeding θ. Otherwise, it is a false positive. If the 
model fails to detect a tumor in a slice, it is considered 
a false negative. We set θ = 0.2 to require a significant, 
but not exact overlap as post study did [16]. In order to 
analyze the detection effect of the model more deeply, we 
designed four indicators to evaluate the detection per-
formance of the model, including overall detection per-
formance of tumors in slices (Per tumor volume), mean 
detection performance of tumors in slices (Per tumor 
cut), abnormal slice detection (Per slice) and abnormal 
case detection (Per patient).

The overall detection performance of tumors in slices 
means to use the tumors in all slices as the denomina-
tor to evaluate the performance of tumor detection. The 
mean detection performance of tumors in slices means to 
use the tumors in all slices of the case as the denominator 

to evaluate the performance of each case on average. 
Abnormal slice detection means the ability to detect at 
least one of the tumors in a slice with tumors, and abnor-
mal case detection means the ability to detect at least one 
of the tumors in a case with tumors.

Experiment environment
In this study, we used Nvidia GeForce RTX 2080 Ti 
(12GB) as the GPU, Intel(R) Xeon(R) Gold 6136 CPU @ 
3.00 Ghz as the CPU, and used the CentOS Linux release 
8.3.2011 as operating system. The method was imple-
mented with python3.7 and Pytorch packages [17].

Results
HCC characteristics
The characteristics of the HCC were shown in Table  1. 
Among the 595 patients with HCC, 93 (15.6%), 133 
(22.4%), 178 (29.9%) and 191 (32.1%) cases had HCC 
smaller than 2 cm, 2 to 3 cm, larger than 3 to 5 cm, and 
larger than 5 cm, respectively. Majority of the HCC were 
single tumor (84%) and in the BCLC stages 0 and A 
(13.9% and 73.9%, respectively).

HFS-Net model development and fusion strategy approach
To evaluate the performance of the customized sub-mod-
els of HFS-Net in specific tumor size, we used 294 cases 
(37,608 slices) of CT images to train the model, 61 cases 
(7,833 slices) for validation, and 136 cases (12,576 slices) 
for test in the first part of the experiment. The longest 
axis of the tumor in the slice was used as the size basis. At 

Table 2 Function strategy in the HFS-Net
Phase Neural network Loss function

fliver Portal-venous 2D DenseU-Net cross entropy + dice loss
fsize Dynamic 2D DenseU-Net focal loss + dice loss
flarge Portal-venous 2D U-Net cross entropy
fsmall Dynamic 2D DenseU-Net focal loss + dice loss
f3D Portal-venous 3D U-Net focal loss + dice loss
Dynamic CT images include non-contrast, arterial, and portal-venous phases

Fig. 1 The HFS-Net data flow for liver and tumor segmentation. Stage I: Identify tumor’s longest axis in every slice of a case. Stage II: Accord tumor size 
by feeding the CT slice which the longest axis of tumors over 30 pixels in the slice for flarge computation and which the longest axis less than 30 pixels of 
tumors in the slice for fsmall computation. Stage III: Combine venous phases of CT images and results of fliver, fsize, flarge, and fsmall as input of f3D computation 
for getting final segmentation of tumors
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first, we developed a 2D DenseU-Net model for liver seg-
mentation, which may facilitate further HCC detection 
within the liver. The dice per case and dice global of the 
2D DenseU-Net model for liver segmentation were 95.2% 
and 95.3%, respectively, in the test set (Table S2).

We applied U-Net and DenseU-Net to CT images of 
various phases to explore the phase effects on the deep 
learning models. The U-Net model using the portal-
venous phase images performed best for tumors above 
30 pixels, whereas the DenseU-Net model using dynamic 
CT images performed best for tumors with a size of 10 
to 30 pixels (Table S3). The DenseU-Net model with 
dynamic CT images achieved the highest dice score of 
48.9%. The second-highest performance was achieved 
by the DenseU-Net model using portal-venous phase 
images, with a dice score of 43.83%.

Then we used the same dataset to test the performance 
of models using different neural network architectures, 
including U-Net, DenseU-Net, R2U-Net, Hyper-DenseU-
Net, and Single Dense Path U-Net. The latter two are 
designed for multimodal medical imaging [18, 19]. The 
results showed that the U-Net model using portal-venous 
phase images performed best for tumors above 30 pixels, 
achieving an average dice score of 87.56% in large tumor 
segmentation, whereas the DenseU-Net model using 
dynamic CT images performed best for tumors with a 
size of 10 to 30 pixels (Table S4).

In the next step, we tested the U-Net and DenseU-Net 
models with different loss functions, including cross-
entropy, focal loss, median frequency balance focal loss, 
and dice loss. The results showed that the DenseU-Net 
model using dynamic CT images with focal loss plus dice 
loss as the loss function could improve the segmentation 
performance for smaller tumors, while the U-Net model 
using portal-venous phase images with cross-entropy 
performed best for larger tumors (Table S5).

Finally, in order to test whether the hierarchical fusion 
strategy of HFS-Net is effective, we evaluated the test 
performance of 2D HFS-Net and 3D HFS-Net (Table S6). 
The 2D HFS-Net means that HFS-Net contains hierar-
chical but does not contain fusion strategy, whereas the 
3D HFS-Net used both hierarchical and fusion strategies. 
The results showed that the 2D HFS-Net model could 

improve the segmentation performance and detection 
rate of tumors with a size of 10 to 50 pixels after combin-
ing U-Net and DenseU-Net models. Since the 3D HFS-
Net model considered the features of the 3D space and 
integrated the outcomes of models of different strategies, 
the 3D HFS-Net model not only improved the segmenta-
tion performance and detection rate as compared to the 
2D HFS-Net model, but also greatly reduced the false 
detection rate. The data flow of the finally proposed HFS-
Net model for liver and tumor detection and segmenta-
tion was shown in Fig. 1.

Performance of the HFS-Net model
In this section, we randomly divide the complete data-
set in a ratio of 5:2:3, used 298 cases (37,824 slices) of 
CT images to train the model, 118 cases (15,423 slices) 
for validation, and 179 cases (22,803 slices) for test. The 
training set fits the model, while the validation set tunes 
and optimizes the model. The final HFS-Net model was 
developed from the training and validation sets. We sub-
sequently evaluate the performance of the model on a 
separate test set. The performance of the HFS-Net model 
for HCC detection and segmentation in the training, vali-
dation and test sets was shown in Table S7.

We compared the HFS-Net model with other single-
strategy models by using the test set. As shown in Fig. 2, 
the HFS-Net model generally had the highest predic-
tion dice and F1-score compared to other single-strategy 
models, suggesting that the HFS-Net model outperforms 
other single-strategy models for the detection and seg-
mentation of HCC from small to large tumor size.

The performance of the HFS-Net model in the test 
set was shown in Table 3. The overall dice per case was 
58.7%, and the dice global was 82.8%. The overall sensitiv-
ity, precision and F1-score were 84.3%, 75.5% and 79.6% 
per slice, respectively, and were 92.2%, 93.2% and 92.7% 
per patient, respectively. Notably, in analysis per patient, 
there is no negative case in the prediction. Therefore, 
the representativeness of the F1-score would be similar 
to that of the sensitivity. The sensitivity, precision and 
F1-score per patient of the HFS-Net model were generally 
higher than 90% for tumors larger than 2 cm. For tumors 
less than 2  cm, the accuracy of the HFS-Net model 

Fig. 2 Performance of HFS-Net segmentation (left), detection (middle) and distribution of sizes of HCC (right)
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decreases but the sensitivity and precision per patient 
remained higher than 70%. Figure 3 showed the examples 
of HCC segmentation by the HFS-Net model in the test 
set. Our model could detect majority of the tumors with 
various sizes, although there were some differences in the 
tumor margin between the labelling by radiologists and 
the HFS-Net model (Fig. 3A-C). Some tumors could be 
detected in the slices of maximum tumor size but might 
be missed in the marginal slice of the tumor (Fig.  3D). 
The HFS-Net model could also detect few small tumors 
in individual CT slices which were initially missed by the 
radiologist’s labeling (Fig.  3E), and the labeling of these 
missed tumors could be corrected.

Calculating time
HFS-Net inference was mainly divided into three stages: 
(1) reading model parameters and moving to GPU mem-
ory; (2) reading CT images to be tested; (3) the model 
inference. It took about 1.527  s to read the parameters 
trained by HFS-Net to the CPU, and about 3.453  s to 
copy HFS-Net from the CPU to the GPU. It took about 
0.028 s to read the CT image to be tested, convert it into 
an array from dicom format and perform pre-processing 
for each slice. It took about 0.030 s to copy the array of 
the image to be tested to the GPU and perform inference 
for each slice. The step of reading model parameters only 
needs to be read once during the initial state, and mul-
tiple CT image inferences can be performed with once 
reading. Across the entire dataset, the average time for 
reading data to complete inference was 4.517  s, with a 

standard deviation of 0.877 s. By testing a case with 126 
slices, the real execution time was 4.29 s. The demonstra-
tion of the HFS-Net model is shown in the supplemen-
tary movie. From the data presented, it is clear that the 
HFS-Net can complete its processing within 10 s.

Discussion
In this study, we proposed a hierarchical fusion strat-
egy of deep learning network called HFS-Net, which 
used a coarse-to-fine mechanism to automatically detect 
HCC from CT images. We found that dynamic CT 
images combined with deep learning methods could 
perform better than a single-phase image model in 
detecting and segmenting small tumors. We used the 
hierarchical fusion strategy to solve the single-model 
trade-off between small and large tumor segmentation 
of CT slices. Compared with the single-strategy model, 
our method has improved detection and segmentation 
performance in tumors of various sizes. Our method 
achieves acceptable performance for detecting and seg-
menting HCC and can interpret a patient’s CT scans 
within 10 s.

This study explored the effect of the dynamic CT 
model and proposed a novel deep learning architecture 
to segment liver and HCC in CT scans. HCC may show 
different brightness in different phases of CT images. 
Interpreting CT images of non-contrast, arterial and por-
tal-venous phases is necessary for the clinical judgment 
of liver tumors. Although deep learning methods have 
achieved good results in the field of tumor segmentation 

Table 3 Performance of HFS-Net in the test set
Segmentation Per tumor volume Per tumor cut Per slice Per patient

All
(n = 179)

Dice per case 58.7% Sensitivity 88.9% 82.1% 84.3% 92.2%
Dice global 82.8% Precision 51.5% 67.6% 75.5% 93.2%
MTD MAE 0.73 cm F1-Score 65.3% 74.2% 79.6% 92.7%

1 ~ 2 cm
(n = 33)

Dice per case 32.0% Sensitivity 69.4% 52.4% 57.0% 72.7%
Dice global 32.7% Precision 45.5% 34.1% 39.5% 77.4%
MTD MAE 0.56 cm F1-Score 54.9% 41.3% 46.7% 75.0%

2 ~ 3 cm
(n = 28)

Dice per case 47.3% Sensitivity 90.3% 75.0% 77.8% 92.9%
Dice global 55.5% Precision 57.1% 58.7% 66.7% 92.9%
MTD MAE 0.57 cm F1-Score 70.0% 65.9% 71.7% 92.9%

3 ~ 5 cm
(n = 52)

Dice per case 60.4% Sensitivity 89.1% 75.7% 79.8% 94.2%
Dice global 69.1% Precision 49.0% 60.8% 69.0% 94.2%
MTD MAE 0.48 cm F1-Score 63.2% 67.4% 74.0% 94.2%

> 5 cm
(n = 66)

Dice per case 76.1% Sensitivity 98.5% 88.1% 89.5% 100%
Dice global 84.5% Precision 54.0% 75.6% 84.2% 100%
MTD MAE 1.04 cm F1-Score 65.7% 81.4% 86.8% 100%

1 tumor
(n = 151)

Dice per case 58.2% Sensitivity 89.2% 81.7% 83.7% 92.7%
Dice global 84.2% Precision 52.0% 66.7% 74.7% 93.3%
MTD MAE 0.70 cm F1-Score 65.7% 73.4% 78.9% 93.0%

> 1 tumors
(n = 28)

Dice per case 62.9% Sensitivity 87.5% 83.3% 86.0% 89.3%
Dice global 78.1% Precision 49.1% 70.6% 78.2% 92.6%
MTD MAE 0.90 cm F1-Score 62.9% 76.4% 82.0% 90.9%

MTD, maximum tumor diameter; MAE, mean absolute error



Page 7 of 10Lee et al. Cancer Imaging           (2024) 24:43 

in the past, they lacked consideration of different phase 
features of CT images [6–13]. In this study, we found 
that using dynamic CT images with DenseU-Net could 
improve the performance in segmenting smaller tumors. 
DenseU-Net’s dense block uses tightly connected paths 
to achieve an effective dynamic CT feature extraction 
method. A previous study indicated that DenseU-Net 
combined with focal loss is quite effective as a model 
architecture for small target segmentation [20].

U-Net is a popular method for image segmentation 
and has achieved success in many medical image seg-
mentation tasks [21–23]. However, U-Net, which has 
less interaction of high-level features and low-level fea-
tures, could not effectively learn the features of dynamic 
CT images. We found that U-Net using single portal-
venous phase CT images to segment larger HCC had bet-
ter performance. HCC in the portal-venous phase had 
clearer edges and were less likely to be confused by noise 
when segmenting larger tumors. In order to maximize 

Fig. 3 Examples of HFS-Net segmentation results from test dataset. A A 8.5 cm HCC representing large HCC (dice per case 88.1%). B A 4.6 cm HCC repre-
senting medium sized HCC (dice per case 80%). A A 8.5 cm HCC representing large HCC (dice per case 88.1%). C A 1.7 cm HCC representing BCLC stage 
0 HCC (dice per case 83.6%). D A tumor was detected in the first three slices but missed in the marginal slice of the tumor. E A large tumor accurately 
segmented by HFS-Net, and a small tumor missed by radiologist labelling but detected by HFS-Net. The green line represents the radiologist’s label, the 
red line represents the output of HFS-Net for tumor margin, and the blue line represents the output of HFS-Net for liver margin
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the performance for both large and small tumors, we 
proposed a novel hierarchical fusion strategy of deep 
learning networks, which uses multi-task learning to cus-
tomize suitable learning strategies for specific tasks and 
merge these strategies at the end to output more reliable 
results. Our results showed that the model segmentation 
and detection performance in each tumor size is better 
than other models using a single learning strategy.

The HFS-Net model could achieve a good perfor-
mance in detecting HCC, and the sensitivity, precision 
and F1-score per patient were generally higher than 92%. 
When stratified by tumor size, the accuracy for detect-
ing HCC larger than 2  cm remained higher than 92%, 
whereas the accuracy of the HFS-Net model decreases 
for tumors less than 2  cm, with the sensitivity and pre-
cision per patient for HCC less than 2 cm of 72.7% and 
77.4%, respectively. Very early HCC may have less obvi-
ous enhancing pattern and may be difficult to be diag-
nosed by CT scan [24]. In clinical practice, some of the 
atypical HCC presented in CT scan were alternatively 
diagnosed by MRI or confirmed pathologically after 
resection or RFA [25]. More case numbers and additional 
image modalities might be needed to further improve the 
detection accuracy for small HCC. The imperfect detec-
tion rates of the HFS-Net model, especially for HCC less 
than 2  cm, indicate that the current AI-derived model 
could assist but not replace the interpretation of the 
radiologists.

The dice global of the HFS-Net model was 82.8%, indi-
cating an acceptable accuracy of tumor segmentation. An 
accurate tumor segmentation may assist automatic mea-
surement of tumor size and volume, which are impor-
tant clinical parameters for staging, treatment decision 
and outcomes prediction [26, 27]. Moreover, automatic 
segmentation may facilitate radiomics analysis of HCC. 
Our recent study showed that the radiomics of HCC may 
contain significant prognostic information and radiomics 
analysis is increasingly adopted by AI-derived prognos-
tic models for cancer outcomes [4, 5]. However, manual 
labeling of the liver and HCC were quite exhausting and 
time-consuming. When establishing the HCC label-
ing dataset in this study, it took about 1 min to interpret 
liver CT for detection of HCC and 10 min for labeling the 
tumor in multiple slices by a radiologist. After develop-
ment of the HFS-Net model, it took only about 8  s for 
automatic detection and segmentation of HCC for one 
patient.

This study has some limitations. First, this is a retro-
spective study from a single center. The accuracy of the 
HFS-Net model need further external validation in the 
future. Second, this study only analyzed CT images with 
HCC. The detection ability for other benign and malig-
nant liver tumors was not evaluated in this study. Clini-
cal image datasets of different liver tumors to train the 

AI model for detection and differential diagnosis of other 
types of liver tumors are needed in the future. Further-
more, while the handling of breathing artifacts is an issue, 
our methodology did not explicitly focus on correcting or 
compensating for these artifacts. Therefore, incorporat-
ing image registration into the enhancement of the image 
processing methods may advance model performance. 
Third, although the dice global of the HFS-Net model 
achieved 82.8%, the accuracy was relatively lower for 
tumors with smaller size. Further research is needed to 
improve prediction accuracy for smaller tumors. Fourth, 
this study only included CT images from patients with 
earlier stage HCC prior to resection or RFA. Therefore, 
the current model could only detect intrahepatic HCC 
before treatment. Future works are needed to analyzed 
post-treatment CT images as well as extrahepatic lesions 
and vascular invasion.

In conclusion, by establishing a large dataset of CT 
images with HCC labeling, we developed a novel HFS-
Net model, which performed better than other single-
strategy models for both small and large HCC. The 
HFS-Net model could achieve a good performance in 
automatic detection and segmentation of HCC from 
dynamic CT images in only a few seconds. This model 
may support radiologic diagnosis and facilitate automatic 
radiomics analysis in the future.
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