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marked a major advancement, melding metabolic imag-
ing with anatomical detail to improve the accuracy and 
comprehensiveness of diagnostic assessments [1]. This 
evolution has broadened PET’s applications across vari-
ous clinical disciplines, notably oncology, neurology, and 
cardiology [2]. The introduction of the Total-body (TB) 
PET/CT or extended axial field-of-view PET/CT systems 
represents a further enhancement, offering increased 
volume sensitivity and a synchronous view of the bodily 
processes [3–5]. This advancement not only has stream-
lined scanning efficiency but also has extended the scope 
of PET applications into unchartered territories in both 
clinical practice and medical research [6–9].

Introduction
Positron Emission Tomography (PET) has evolved from 
its initial role as a specialised research tool into an indis-
pensable element in clinical diagnostics, thereby signifi-
cantly enhancing our understanding of physiological and 
molecular activities within the human body. The inte-
gration of PET with computed tomography (PET/CT) 
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Abstract
The evolution of Positron Emission Tomography (PET), culminating in the Total-Body PET (TB-PET) system, 
represents a paradigm shift in medical imaging. This paper explores the transformative role of Artificial Intelligence 
(AI) in enhancing clinical and research applications of TB-PET imaging. Clinically, TB-PET’s superior sensitivity 
facilitates rapid imaging, low-dose imaging protocols, improved diagnostic capabilities and higher patient comfort. 
In research, TB-PET shows promise in studying systemic interactions and enhancing our understanding of human 
physiology and pathophysiology. In parallel, AI’s integration into PET imaging workflows—spanning from image 
acquisition to data analysis—marks a significant development in nuclear medicine. This review delves into the 
current and potential roles of AI in augmenting TB-PET/CT’s functionality and utility. We explore how AI can 
streamline current PET imaging processes and pioneer new applications, thereby maximising the technology’s 
capabilities. The discussion also addresses necessary steps and considerations for effectively integrating AI into TB-
PET/CT research and clinical practice. The paper highlights AI’s role in enhancing TB-PET’s efficiency and addresses 
the challenges posed by TB-PET’s increased complexity. In conclusion, this exploration emphasises the need for 
a collaborative approach in the field of medical imaging. We advocate for shared resources and open-source 
initiatives as crucial steps towards harnessing the full potential of the AI/TB-PET synergy. This collaborative effort is 
essential for revolutionising medical imaging, ultimately leading to significant advancements in patient care and 
medical research.
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The ‘value’ of TB-PET extends well beyond its tech-
nological advancements. Its true value is encapsu-
lated in the flexibility of imaging protocols as well as in 
novel applications in both clinical settings and research 
domains. Clinically, TB-PET is notable for its enhanced 
sensitivity and efficiency, enabling rapid imaging and 
low-dose protocols, as well as facilitating delayed and 
same-day dual-tracer imaging [10]. These attributes have 
already markedly improved diagnostic capabilities and 
patient experiences. While still in its early stages in clini-
cal research, TB-PET has shown promise in exploring 
systemic interactions across organ systems and in foster-
ing a more holistic understanding of the human body [11, 
12].

To date, artificial Intelligence (AI) has already estab-
lished a significant presence in the realm of radiology, 
and its impact is increasingly evident in nuclear medi-
cine as well [13]. Over the years, AI has successfully inte-
grated into the entire imaging workflow of PET, including 
aspects such as image acquisition, image reconstruction, 
data corrections, and data mining. In the context of TB-
PET, the application of AI in augmenting TB-PET’s value 
is still in its nascent stages but is showing steady growth. 
Given that TB-PET generates dense and rich datasets, 
AI is expected to play a central role in transforming this 
data into meaningful insights. Moving beyond its previ-
ous role as a supplementary technology, AI is emerging 
as a fundamental component in the future of TB-PET 
research.

This manuscript aims to explore both the current and 
potential roles of AI in enhancing the functionality and 
utility of TB-PET. Central to this inquiry is an examina-
tion of how AI can not only streamline existing TB-PET 
procedures but also pioneer previously unexplored appli-
cations, fully capitalising on the technology’s advanced 
capabilities. This paper will also discuss the critical steps 
and factors necessary for the effective integration of AI 
into TB-PET research.

Current applications of total-body PET: enhancing 
efficiency with AI
The clinical community has shown ardent interest in 
TB-PET, largely because of its greater sensitivity com-
pared to traditional short-axial field-of-view PET/CT 
systems. This enhanced volume sensitivity facilitates two 
key imaging options: rapid acquisitions with conven-
tional dose injection and low-dose imaging over standard 
acquisition times. The first approach allows for swift, 
comprehensive imaging, essential for a detailed assess-
ment of disease in a single bed position. Conversely, the 
latter option allows for the distribution of radiation dose 
over time, enabling longitudinal studies for more detailed 
disease observation and characterization. Furthermore, 
TB-PET’s heightened sensitivity also permits single-day, 

dual-tracer imaging [10]. This approach entails sequential 
scanning utilising disparate tracers, thereby substantially 
optimising patient throughput and scanning logistics. 
Additionally, the advent of dynamic imaging in a single 
bed position, supplemented by vendors integrating direct 
parametric reconstructions into TB-PET systems, pro-
vides the opportunity for more nuanced characteriza-
tion of oncological cases in clinical routine [14, 15]. But 
despite the advancements brought forth by TB-PET, it 
also introduces new challenges in the domain of clinical 
imaging.

Revealing more, demanding greater quantification
Initial investigations using the uEXPLORER (United 
Imaging) with healthy subjects have demonstrated 
remarkable detail in PET images from extended scan 
durations (up to 20 min), showcasing clear delineation of 
vessel walls, spinal cord, and brain structures [5]. Subse-
quent clinical studies employing either the uEXPLORER 
or Siemens Quadra TB-PET/CT system have further 
demonstrated improvements in both image quality and 
lesion quantification [16–20]. Notably, delayed imaging 
techniques have been observed to enhance the contrast 
between lesions and their background while simultane-
ously reducing image noise [19, 21]. Beyond oncology, 
the efficacy of ultra-low-dose TB-PET in imaging cardio-
vascular conditions and autoimmune inflammatory dis-
eases underlines its broad clinical utility [22, 23].

The comprehensive diagnostic capabilities offered 
by TB-PET, though invaluable, also come with risks of 
information overload for clinicians tasked with inter-
preting these complex scans. Traditionally, results have 
been derived through either visual assessment or labour-
intensive manual segmentation, approaches that are 
increasingly inadequate given the breadth and volume 
of data provided by TB-PET. This is where AI-driven 
segmentation and detection tools become crucial, offer-
ing streamlined processing and interpretation of diverse 
biomarkers, from tumour loads (Fig.  1) and aortic wall 
uptake to systemic inflammations.

Currently, no single algorithm exists that can match the 
multi-label classification skills of a clinician across a vari-
ety of clinical scenarios. Nonetheless, significant progress 
has been made in tumour segmentation within 18F-FDG 
PET/CT imaging [24–26], driven by deep learning frame-
works like nnU-Net [27] and MONAI Auto3DSeg [28], 
and supported by open-source datasets from initiatives 
such as AUTOPET [29] and HEKTOR [30]. Despite these 
advances, the challenge of algorithmic generalisation 
beyond specific training datasets persists. This limita-
tion becomes particularly pronounced in total-body PET 
imaging, which encompasses a diverse range of clinical 
findings, from various tumour types to pathologies like 
inflammation and infection, particularly since these may 
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coexist in individual patients. Consequently, developing 
individual algorithms for each distinct aspect within this 
domain is impractical, considering the vast diversity of 
data involved.

In response to these challenges, the concept of founda-
tional models offers a promising path forward. The suc-
cess of vision models such as Meta’s ‘Segment Anything 
Model’ (SAM) [31] in general applications has inspired 
similar innovations in medical imaging. The Medical 
SAM (MedSAM), for instance, demonstrates the poten-
tial of these models to segment any specified area in med-
ical imaging based on varied inputs like bounding boxes 
or points [32]. Interestingly, the native SAM is already 
capable of performing semantic segmentation on 2D 
PET images (Fig. 2), without any modification. A similar 
approach for 3D, tailored for PET imaging, could acceler-
ate the analysis of complex TB-PET datasets. A founda-
tional model that is agnostic to tracer or disease, would 
allow clinicians to efficiently segment and analyse diverse 
data, greatly facilitating the diagnostic process. The clini-
cal impact of such a model could be profound, potentially 
automating the detection of key biomarkers such as Total 
Lesion Glycolysis (TLG) and Metabolic Tumour Volume 
(MTV), and efficiently quantifying systemic inflamma-
tion. This innovation holds the promise of becoming an 

essential tool in routine clinical practice, enabling more 
effective and efficient data mining from TB-PET imaging 
studies.

In the radiation drama of total-body PET/CT: CT plays the 
lead
The substantial sensitivity increase in total-body PET/
CT imaging has led to the advent of ultra-low-dose 
PET techniques, using as little as 1/20th of the standard 
dose while maintaining clinical image quality [33]. This 
advancement has broadened the scope for dose-opti-
mised longitudinal imaging, with applications spanning 
various clinical areas [21, 34]. These include the develop-
ment of new radiopharmaceuticals, monitoring of treat-
ment responses, early detection of malignancy-related 
vascular complications, immune response imaging in 
infectious diseases, and paediatric imaging [21, 34–38]. 
The core concept involves dividing the total radiation 
dose across multiple scans to avoid additional radia-
tion exposure. However, it’s important to note that in 
TB- PET/CT imaging, the primary source of radiation 
exposure is often not the PET component but rather the 
CT component. This aspect becomes particularly rel-
evant in dual-time-point and dual-tracer studies, where 
patients undergo two CT scans [39, 40]. While CT is 

Fig. 1 Multifaceted 18F-FDG PET Imaging Analysis of Follicular Lymphoma with AI-Assisted Tumor Detection. Presented here is a comprehensive visual-
ization of follicular lymphoma characterized by diverse 18F-FDG uptake patterns across nodal and extranodal sites. The illustration captures the Molecular 
Imaging Tumor Volume (MTV) on 18F-FDG PET, delineated using the LION (Lesion Segmentation) algorithm, a native AI tool that identifies lymphoma 
lesions without the pre-setting of SUV thresholds. This intelligent segmentation excludes physiological uptakes in the kidneys, bladder, and brain for 
enhanced specificity in oncological imaging. Complementing this, the Multi-Organ Objective Segmentation (MOOSE) automatically defines organ con-
tours, with a focus on the spleen in this instance. MOOSE enables the precise determination of the fraction of the spleen infiltrated by lymphoma, which 
is computed to be 56% of the total organ volume. The deployment of these AI algorithms for tumour and tissue segmentation provides a robust and 
reproducible quantitative assessment, offering novel prognostic insights into the extent and aggressiveness of follicular lymphoma
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indispensable in providing essential anatomical details 
and enabling attenuation correction in clinical PET/CT 
studies, in the context of longitudinal imaging, either 
reducing the CT dose or omitting repeated CT scans 
could be beneficial. Such an approach aligns with the 
‘As Low As Reasonably Achievable’ (ALARA) principle 
[41], supporting radiation safety initiatives like the ‘Image 
Gently’ campaign [42], which advocates for minimising 
radiation exposure, particularly in paediatric imaging. 
Researchers have already used AI in tackling this chal-
lenge, particularly in the context of attenuation correc-
tion. Sari et al. developed a deep learning-based method 
to create attenuation maps for PET scans without need-
ing CT scans for correction [43]. Specifically, a convolu-
tional neural network (CNN) was used to enhance initial 
µ-maps generated using a joint activity and attenuation 
reconstruction algorithm, showing promising results 
in enabling CT-free attenuation and scatter correction. 
This approach could be particularly useful in longitu-
dinal imaging studies, where reducing or omitting CT 
scans can significantly lower patient radiation exposure 
while maintaining imaging quality. Likewise, Guo, Xue 
et al [44]. address a key challenge in CT-free PET imag-
ing using deep learning (DL): the heterogeneity of tracers 
and scanners. They simplify this complex issue through 

domain decomposition, separating the learning process 
into low-frequency, anatomy-dependent attenuation cor-
rection and preserving high-frequency, anatomy-inde-
pendent textures. This approach, trained with just one 
tracer on one scanner, showed robustness and effective-
ness across various tracers and scanners, enhancing the 
potential for clinical translation of DL methods in PET 
imaging.

In another study by Hu et al., [45] an ultra-low-dose 
CT (ULDCT) reconstructed with an artificial intelligence 
iterative reconstruction algorithm (AIIR) was evaluated 
for use in 18F-FDG total-body PET/CT examinations. 
The study, including both phantom and clinical com-
ponents, explored the feasibility of ULDCT (10 mAs) 
reconstructed with AIIR in comparison to standard-dose 
CT (SDCT) (120 mAs) using hybrid iterative reconstruc-
tion (HIR). The results indicated that while ULDCT-AIIR 
did not completely match the image quality of SDCT-
HIR, it significantly reduced image noise and improved 
the signal-to-noise ratio (SNR), suggesting its potential 
application under specific circumstances in PET/CT 
examinations.

These advancements in AI for PET imaging not only 
enhance attenuation correction but also significantly 
increase the value of total-body PET by facilitating 

Fig. 2 Comparative Visualization of ‘Segment Anything Model’ Performance on an Unseen 2D PET Image. Panel A displays the original PET image slice. 
Panel B illustrates the ‘Segment Anything Model’ executing point-based segmentation, pinpointing a singular region of interest (ROI). Panel C demon-
strates the model applying a bounding box approach to encapsulate the ROI within a minimal rectangular boundary. Panel D presents the multi-mask 
segmentation capability of the model, initiated from a point-based prompt to discern multiple areas with varying intensities. Panel E showcases the fully 
autonomous segmentation proficiency of the ‘Segment Anything Model,’ delineating multiple ROIs without any manual prompts
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low-dose longitudinal imaging. This progression marks 
a pivotal step in maximising the clinical utility of PET 
imaging, offering more frequent and safer imaging 
options for patient monitoring and disease progression 
assessment, in line with minimising radiation exposure.

Advancing disease characterization amidst growing data 
complexities
The utilisation of dual-tracer PET/CT imaging with 
18F-FDG and 68Ga-PSMA has been instrumental in 
enhancing our understanding of tumour biology, specifi-
cally in terms of aggressiveness and differentiation. This 
approach, which combines 18F-FDG and 68Ga-PSMA 
tracers, has been implemented in preliminary studies 
using conventional PET/CT systems [39]. These studies 
have primarily focused on patient prognostic stratifica-
tion. However, the integration of this dual tracer method 
into clinical routine has been limited. The primary chal-
lenges include increased radiation exposure and logistical 
complexities, such as organising scans on two separate 
days.

Recent advancements in TB-PET/CT have shown 
promising developments in addressing these challenges. 
Clinically viable protocols have been developed that 
allow for the sequential imaging of 68Ga-PSMA and 
18F-FDG on the same day [40]. These protocols typically 
involve administering a standard dose of 68Ga-PSMA, 
followed by a low-dose 18F-FDG scan. Additionally, TB-
PET/CT has been explored for dual-tracer PET/CT scans 
using 18F-FDG and FAPI tracers, offering insights into 
the tumour-associated microenvironment [10].

However, it is important to distinguish these practices 
from multiplexed PET imaging. Multiplexed PET imaging 
involves administering a mixture of tracers to the patient 
and employing advanced reconstruction techniques to 
isolate individual signals. This method offers two sig-
nificant advantages: firstly, it facilitates a single imaging 
session without the need for a second CT or subsequent 
scan. Secondly, it enables voxelwise alignment, provid-
ing true spatial multiplexing. This capability is crucial for 
understanding the spatial heterogeneity of tumours, as 
the multiplexed image can simultaneously highlight vari-
ous attributes of the tumour under investigation.

The advent of reconstruction-based multiplexing in 
PET/CT imaging represents a significant advancement in 
the field, offering a sophisticated approach to capturing 
complex biological processes in a single imaging session 
[46]. While this technique holds great promise, its imple-
mentation in clinical practice is not yet widespread, pri-
marily due to its implementation complexity. However, 
an equally effective alternative can be achieved through 
the precise spatial alignment of dual tracer PET/CT 
images, a method that can be readily applied in current 
clinical settings with the aid of artificial intelligence (AI).

The spatial alignment of two distinct tracers in PET/
CT imaging presents a notable challenge, as these trac-
ers often exhibit varying activity distributions. A promis-
ing solution to this problem is aligning the corresponding 
CT images first and then transferring the derived motion 
fields to their PET counterparts. This technique, espe-
cially relevant in sequential dual-tracer scans performed 
on the same day, could effectively mimic the outcomes 
of reconstruction-based multiplexing, thus offering a 
‘pseudo-multiplexing’ effect (Fig. 3).

Nevertheless, aligning the CT images is a complex task. 
Conventional diffeomorphic algorithms, despite their 
capability to handle large deformations, may not provide 
the necessary precision. Research has shown that aug-
menting these algorithms with dense segmentation maps 
can greatly enhance the accuracy of the motion fields, 
leading to more accurate alignment [47]. In this context, 
the use of advanced open-source CT organ segmentation 
tools such as MOOSE [48] and TotalSegmentator [49], 
which are based on the robust nnU-Net [27] AI frame-
work, becomes crucial. These tools facilitate detailed 
whole-body segmentations, which, when integrated into 
the registration process, significantly improve alignment 
accuracy.

For the registration process, one can choose between 
classical diffeomorphic algorithms [50, 51], known for 
their effectiveness in computational neuroanatomy, or 
adopt contemporary learning-based algorithms like 
VoxelMorph [47]. Learning-based algorithms (e.g., 
VoxelMorph) offer a substantial advantage in terms of 
computational speed, as they eliminate the need for 
optimization during the inference process, unlike classi-
cal diffeomorphic algorithms, which are more computa-
tionally demanding. By leveraging AI, particularly in the 
alignment of dual-tracer TB-PET/CT images, we can 
approach the intricacies of tumour heterogeneity with a 
level of precision and detail akin to that achieved in mul-
tiplexing techniques used in immunohistochemistry.

Another emerging area of interest in TB-PET imaging 
is dynamic imaging, adding a temporal domain to the 
rich 3-D information intrinsic to PET. Recent research 
indicates that by analysing the raw time activity curves 
(TACs) of tumour regions, it is possible to assess the spa-
tial heterogeneity within tumours [20, 52]. At the same 
time, kinetic modelling has garnered considerable atten-
tion as well. Research groups are exploring its applica-
bility in oncology, particularly in ways to abbreviate the 
scan duration required for kinetic analysis [53, 54]. The 
objective is to extract kinetic parameters that provide 
a more nuanced understanding of the tumour under 
investigation. Nonetheless, these dynamic PET imaging 
techniques present several challenges. Characterising 
TACs requires precise tumour segmentation, and kinetic 
modelling depends on segmenting specific regions to 



Page 6 of 14Shiyam Sundar et al. Cancer Imaging           (2024) 24:51 

determine the input function derived from imaging data 
(IDIF). Both tasks are labour-intensive and demand high 
precision. In this context, whole-body AI-based organ 
segmentation tools like MOOSE [48] and TotalSegmen-
tator [49] prove invaluable. They facilitate the segmenta-
tion process for IDIF as both cover major input function 
regions, thereby streamlining kinetic modelling (Fig.  4). 
Employing a foundational AI model for tumour segmen-
tation, as previously discussed, can significantly ease 
the extraction and analysis of tumour TACs. Integrating 
AI into TB-PET imaging workflows is essential to fully 
leverage dynamic imaging’s potential. Automating these 
processes reduces the manual and cognitive burden on 
clinicians, allowing them to concentrate more on inter-
pretation and clinical decision-making.

Novel applications from total-body PET: AI - a key 
enabler in generating value
Comprehensive health assessment with total-body PET: a 
unified diagnostic approach
The capability of TB-PET/CT to simultaneously image 
the entire human body, combined with its high spatial 
and temporal resolution, presents certain unique oppor-
tunities. Recent research has demonstrated the potential 
of conducting sub-second image reconstructions with 
TB-PET/CT, closely mirroring the temporal resolution 
achieved by functional Magnetic Resonance Imaging 
(fMRI) [55]. These advanced capabilities in TB-PET/CT 
could herald a paradigm shift from traditional imag-
ing (often colloquially referred to as “lumpology [56]”) 
to a renewed focus on PET’s fundamental strengths in 
assessing physiological and pathophysiological functions 
and processes. This capacity for high-temporal dynamic 
imaging across all organs promises to deliver a wealth 
of clinically relevant data, surpassing mere identifica-
tion of pathologies and encompassing a comprehensive 

Fig. 3 Characterising Oncological Heterogeneity through Multiplexed PET Imaging. The figure demonstrates the potential of multiplexed PET imaging 
technique on a patient with coexistent malignancies: 68Ga-PSMA-positive/ 18F-FDG- negative prostate cancer (refer to PET/CT axial slice) highlighted in 
green and 18F-FDG-avid metastatic melanoma (refer to coronal slice with prominent 18F-FDG uptake and mild 68Ga-PSMA uptake), highlighted with red 
arrows. Separate scans using 18F-FDG and 68Ga-PSMA tracers reveal distinct metabolic and molecular patterns corresponding to melanoma and prostate 
cancer, respectively. The composite image results from diffeomorphic algorithmic synthesis, assigning discrete chromatic channels—red for 18F-FDG and 
green for 68Ga-PSMA—to each radiotracer, thereby creating a composite image. This multiplexed image merges the two separate datasets into a single, 
integrated visual field. Manifestations of sole 18F-FDG uptake are visualized in red, 68Ga-PSMA uptake in green, and concomitant tracer accumulation is 
rendered in shades of yellow, indicating co-expression. 18F-FDG dominant malignancies in the multiplexed images are highlighted with red arrows, while 
68Ga-PSMA dominant malignancies are highlighted with green arrows. This technique of image multiplexing, akin to multiplex histopathology, allows for 
a nuanced characterization of tumoural heterogeneity, providing an intuitive and single-image synopsis of the distinct pathophysiological processes at 
play
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understanding of bodily functions. Measurements 
including first-pass cardiac ejection fractions, as well 
as pulmonary and renal perfusion assessments, may 
be derived through the analysis of finely sampled PET 
frames followed by voxel-level data evaluation, thereby 
providing an extensive assessment of health [37, 57]. In 
such studies, the definition of volume and motion cor-
rection is going to be crucial post-processing steps, 
essential for the generation of data that is both quanti-
tative and useful. Furthermore, as previously discussed, 
the availability of various AI-based organ segmentation 
algorithms could prove to be indispensable in the facili-
tation of such research endeavours. Addressing motion 
correction in total-body PET presents a complex chal-
lenge, given the multifaceted nature of motion encoun-
tered in such settings. This includes gross body motion, 
respiratory and cardiac movements, as well as abdominal 
motion, with the motion profile varying from rigid struc-
tures like the brain to more deformable ones like the gut 
and bladder. Developing a motion compensation tool that 

effectively manages this range of motion profiles across 
various tracers poses significant difficulty.

Recent research has explored the application of diffeo-
morphic registration for total-body motion correction. 
For instance, Sun et al. [58] utilised Symmetric Normali-
sation [50] for whole-body motion correction in 18F-FDG 
PET/CT scans. In a similar vein, we introduced FALCON 
[59], a diffeomorphic algorithm optimised for speed and 
applied across various tracers to correct for total-body 
motion, albeit compromising the symmetric property 
of the algorithm for enhanced computational efficiency 
[51]. Notably, both these algorithms demonstrate limi-
tations in correcting early frames (less than 2 min post-
injection), where tracer dynamics undergo rapid changes 
critical for clinical perfusion parameters. The primary 
challenge here lies in the disparity of image content in 
these early frames, attributable to the swiftly changing 
tracer kinetics, which complicates the task of any correc-
tion algorithm.

Fig. 4 AI-Driven Multi-Organ Segmentation (MOOSE) for kinetic analysis in dynamic PET. This figure demonstrates an AI-assisted segmentation ap-
proach applied to dynamic PET/CT imaging for the extraction of time-activity curves (TACs) across multiple organs. Central is a PET image overlaid with 
segmented organs; surrounding it are graphs depicting TACs for the brain, left ventricle, aorta, lung, liver, pancreas, spleen, and skeleton. These curves 
are derived from dynamic PET scans post-segmentation and are instrumental in streamlining kinetic modeling and facilitating absolute quantification of 
tracer uptake, thus enhancing the precision of metabolic studies
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To address this specific issue, the use of conditional 
Generative Adversarial Networks (GANs) has been pro-
posed and effectively implemented in both brain [60] and 
total-body studies [61]. The objective of these networks 
is to create synthetic images resembling those of later 
frames from the early imaging data. However, a hurdle in 
this approach is the limited generalizability across differ-
ent tracers, necessitating specific training for each type of 
tracer used.

With the emergence of generative AI models, such 
as diffusion models [62], there is potential to develop a 
more universal model capable of generalising across mul-
tiple tracers. Such a model could theoretically create a 
pseudo-late-frame image from early-frame data or trans-
form all images into an intermediate synthetic form to 
facilitate motion correction, potentially overcoming the 
current limitations in early frame motion correction.

Total-body PET with AI: a window into understanding 
normal physiology and health
Originally, PET imaging predominantly served as a tool 
for exploring physiological processes prior to its evolu-
tion into a clinical diagnostic instrument [63]. Concerns 
regarding radiation exposure have steered the medical 
community towards alternative modalities, notably MRI. 
However, the advent of TB-PET, coupled with advance-
ments in minimising CT radiation exposure, has paved 
the way for ultra-low dose imaging. This innovation holds 
the promise of safely extending PET imaging applications 
to healthy populations, thereby broadening its utility in 
understanding normal physiology and non-malignant 
disease processes.

Comprehending normal physiology is paramount for 
the accurate interpretation of disease-related anomalies. 
Within the field of oncology, PET imaging has predomi-
nantly concentrated on tumours and their immediate 
surroundings. Nevertheless, the wider scientific consen-
sus views cancer as a systemic condition, thus underscor-
ing the need to extend focus beyond just the tumour’s 
locale. Observing the macroenvironment, particularly 
organ systems not directly compromised by tumour inva-
sion, is crucial for a holistic understanding of cancer’s 
and therapies systemic and toxic effects [64, 65]. This 
approach is not only pertinent in oncology but may also 
hold significant relevance in elucidating musculoskeletal 
disorders and metabolic diseases, where systemic factors 
play a key role [66, 67].

The creation of a ‘normative database’ derived from 
healthy individuals is instrumental in facilitating the 
rapid systemic analysis of pathological cases. The notion 
of a normative database is well-established in medicine, 
providing clinicians with a benchmark of ‘normalcy’ 
for various parameters. This concept has been exten-
sively applied in the realm of neuroimaging, where it has 

become a cornerstone in the identification of pathologi-
cal conditions [68–71]. Extending this approach to total-
body PET would allow for a similar utility in detecting 
systemic anomalies, offering a comprehensive reference 
point for distinguishing between normal and abnormal 
physiological states across the entire body.

Initial research in the realm of whole-body MRI, par-
ticularly under the scope of Imiomics [72], has laid the 
groundwork for establishing a proof-of-concept nor-
mative database. This database focused on quantifying 
average distributions of adipose and lean tissue within 
an asymptomatic population. Participants for this study 
were randomly selected from the general population, 
which meant that not all individuals were in perfect 
health. In this sample, 2% had diagnosed diabetes, 8% 
were known to have hypertension, and 4% were under-
going statin therapy. However, none of the participants 
suffered from severe diseases, such as cancer, myocardial 
infarction, stroke, heart failure, or chronic obstructive 
lung disease. Though not representative of a completely 
healthy cohort, this initial effort has laid the groundwork 
for developing a comprehensive total-body normative 
database, a crucial step in expanding the potential of PET 
imaging in systemic health assessment.

Aligning total-body PET images across individuals 
presents a significant challenge, particularly when com-
pared to MRI. This difficulty arises from PET’s relatively 
lower resolution and variable tracer uptake characteris-
tics. Nevertheless, it is feasible to utilise the accompa-
nying CT images to facilitate alignment, subsequently 
transferring the deformable fields to their PET coun-
terparts. In the process of constructing a normative 
database, the deformable alignment of healthy control 
images is a key step in creating a standard atlas of healthy 
individuals.

During this alignment process, two elements are of 
paramount importance: firstly, the alignment between 
subjects, and secondly, the segmentation that supports 
and enhances this alignment (Fig.  5). Recent advance-
ments in AI, as discussed in the context of multiplexing, 
can greatly expedite this process. Tools producing dense 
segmentation maps, along with learning-based diffeo-
morphic methods like VoxelMorph [47], have the poten-
tial to significantly streamline the creation of normative 
databases. However, it is crucial to consider various con-
founding factors, such as age, body mass index (BMI), 
and gender, when developing these databases. Careful 
accounting for these variables is essential to ensure that 
the normative database accurately reflects the diversity 
and range of the healthy population [73]. This careful 
consideration is vital for the database to be a reliable and 
representative tool in clinical and research settings.

The creation of a normative database via TB-PET 
not only paves the way for high-throughput screening 
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in at-risk populations like lung cancer (Fig.  6) or breast 
cancer but also presents the opportunity to explore com-
prehensive assessments of physiological health and age-
ing effects throughout the body. Notably, achieving a 
crucial milestone in this endeavour is the reduction of 
the effective radiation dose to patients to levels below 1 
mSv per scan. While 18FDG remains the clinical tracer-
of-choice for many clinical applications, generating simi-
lar normative databases for additional tracers that are 
now routinely used in clinical practice, including PSMA 
and somatostatin receptor ligands, and emerging tracers, 
such as FAPI agents, will also be beneficial.

Making sense of systemic information provided by total-
body PET: AI
In previous sections, we have established that TB-
PET/CT generates a comprehensive array of multi-
dimensional systemic data. The extraction of 
meaningful insights from such data necessitates the 
adoption of robust analytical techniques, among which 
AI stands out as particularly suited for this task. Recent 

research initiatives have focused on delving into this mul-
tidimensional data to understand systemic effects across 
both healthy and pathological cohorts. These studies 
primarily utilise classical correlation analysis methods, 
which involve extracting organ-specific Standardised 
Uptake Values (SUVs) and generating correlation heat-
maps within the cohorts under study. The fundamental 
aim is to identify variations in the resulting correlation 
maps [8, 11, 74, 75].

A notable advancement in this field was introduced 
by Sun et al. [11]., who proposed a novel methodology 
centred on the identification of individual deviations 
from normative patterns. This is achieved through a 
perturbation-based approach, where the baseline healthy 
correlation network is disrupted by integrating patholog-
ical cases, thereby facilitating the detection of individual 
anomalies. However, it is crucial to recognize that these 
studies typically involve relatively small sample sizes. 
Moreover, it is imperative to understand that these are 
correlation-focused studies that do not inherently imply 
causality.

Fig. 5 Methodology for Normative Database Construction from PET/CT Data. Panel [A] depicts the sequential process for establishing a normative da-
tabase derived from PET/CT data. The protocol initiates with a TB-PET examination, followed by patient stratification according to BMI, age, and gender. 
The subsequent phase involves deriving detailed organ segmentations from CT scans. These segmentations then guide diffeomorphic registrations to 
align subjects across diverse cohorts. The derived deformation fields from the CT alignments are applied to the corresponding PET data, culminating 
in a comprehensive normative database. Panels [B], [C], and [D] display representative maximum intensity projections PET images from the database, 
segmented by cohort characteristics. Panel [B] exemplifies a Japanese male cohort with a BMI range of 20.0-24.9, while Panels [C] and [D] represent 
European cohorts, male and female, respectively, both within the same BMI range. The noticeable radiotracer uptake observed in the right arm of the 
normative template image in panel [C] is an artifact attributable to the initial administration site of the radiopharmaceutical. Such localized hyperactivity 
represents a procedural remnant rather than pathological significance. Each panel provides the cohort’s demographic and sample size data, reflecting 
the database’s population diversity
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In the context of analysing comprehensive datasets 
derived from TB-PET/CT scans, a multitude of meth-
odological approaches are available to researchers. Key 
among these is the utilisation of robust computational 
frameworks such as scikit-learn [76], which facilitate the 
compilation of an extensive array of parameters from 
total-body datasets. These parameters include SUVs, 
kinetic parameters, and additional clinical data, such 
as volumetric measurements obtained from CT scans. 
Subsequent to parameter extraction, various machine 
learning algorithms can be employed to effectively differ-
entiate between distinct groups, thus framing this analy-
sis as a classification problem.

Alongside these conventional methodologies, the 
emergence of Automated Machine Learning (AutoML) 
represents a significant advancement in the field of 
medical image analysis. AutoML particularly enhances 
the automatic analysis of tabulated data from TB-PET 
scans. By automating critical tasks like model selection, 
hyperparameter tuning, and validation, AutoML ren-
ders advanced analytical techniques more accessible and 
efficient. Prominent frameworks in this domain include 
Google’s AutoML [77], H2O AutoML [78], and TPOT 
(Tree-based Pipeline Optimization Tool) [79]. Google’s 
AutoML is notable for its user-friendly interface and 
powerful algorithms that adeptly handle complex data 
structures, making them suitable for researchers with 
varying levels of programming expertise. H2O AutoML 
is acclaimed for its efficiency in rapidly producing high-
quality models. Conversely, TPOT leverages a genetic 
programming approach to optimise machine learning 
pipelines, ensuring optimal model adaptation for specific 
datasets.

The incorporation of these AutoML frameworks into 
the analysis of total-body PET data substantially stream-
lines the identification of relevant features and patterns. 
By automating the more labour-intensive aspects of 
model building, researchers can devote greater attention 
to interpreting results and extracting clinically relevant 
insights. Additionally, the iterative model refinement 
and adaptability to new data inherent in AutoML, ensure 
that analyses remain at the forefront of medical dataset 
evolution.

To further enhance the transparency and interpretabil-
ity of these algorithms, the application of explainable AI 
methods is advantageous. Techniques such as SHAP [80] 
(SHapley Additive exPlanations) and LIME (Local Inter-
pretable Model-agnostic Explanations) [81] elucidate 
how individual features contribute to specific algorith-
mic decisions. This clarity is instrumental in elevating the 
interpretability of the results.

However, when employing these machine learning 
techniques, it is crucial to exercise caution to circum-
vent issues like overfitting and underfitting. A commonly 
overlooked yet critical aspect is the sample-to-feature 
ratio [82, 83]. Maintaining a minimum ratio of 10:1 is 
widely recommended, serving as a reasonable benchmark 
to ensure the robustness and reliability of the model’s 
performance.

The recent advancements in deep learning open prom-
ising avenues for mining TB-PET datasets, especially 
through the creation of embeddings [84]. Utilising deep 
learning architectures like convolutional neural networks 
(CNNs) [85] or Vision Transformers [86], three-dimen-
sional PET images can be transformed into high-dimen-
sional vector embeddings. These embeddings have the 

Fig. 6 Metabolic aberration Analysis Using PET Normative Database. This figure presents a method for evaluating patient PET scans against a PET nor-
mative database. The first panel shows the averaged data from a healthy cohort forming the normative PET database, therefore providing a reference 
for typical tracer distribution. The second panel displays a lung cancer patient’s PET image, where abnormalities are indicated with arrows. The patient’s 
PET image is diffeomorphically aligned with the Normative database, and the deviations from the normalcy are calculated as z-maps. In the third panel, 
the patient’s PET data is overlaid with a z-map, highlighting deviations from the normative model. The fourth panel further overlays the z-map onto the 
patient’s CT image, offering anatomical context to the functional PET data. The colour scale on the far right indicates standard deviations from the norma-
tive mean, with warmer colours denoting higher deviations
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potential to concisely capture the comprehensive physi-
ological and metabolic profiles of patients, offering a dis-
tilled yet information-rich representation of the original 
dataset.

The role of vector databases [87] in this context is 
crucial and deserves emphasis. Traditional relational 
databases are not optimised for handling the high-
dimensional data typical of deep learning outputs. Vector 
databases, on the other hand, are specifically designed to 
store, index, and retrieve high-dimensional vectors effi-
ciently. This makes them uniquely suited for dealing with 
the kind of complex, feature-rich data produced by deep 
learning models applied to TB-PET datasets. Their abil-
ity to perform similarity searches and clustering at scale 
adds significant value, allowing researchers to quickly 
and accurately group patients into meaningful categories, 
such as responders and non-responders to treatments 
like radioligand therapy and immunotherapy.

Incorporating vector databases into this process 
facilitates the handling and analysis of these complex 
embeddings, enhancing the potential of deep learning 
techniques to discern subtle patterns and correlations 
within the data. This synergy between deep learning and 
vector databases can significantly augment the precision 
and effectiveness of treatments, leading to more person-
alised therapeutic strategies.

Charting the future of total-body PET with AI - a 
call for collaborative innovation
As one reflects on the advancements in TB-PET and its 
clinical applications, it becomes evident that AI stands at 
the forefront of enhancing this field. TB-PET’s increased 
sensitivity and comprehensive diagnostic capabilities, 
though invaluable, introduce the challenge of managing 
and interpreting vast amounts of complex data. Here, 
AI emerges not just as a tool but as a pivotal catalyst in 
transforming TB-PET from a diagnostic modality to a 
comprehensive solution for personalised medicine.

The clinical community’s growing interest in TB-PET is 
primarily driven by its capability for rapid and low-dose 
imaging. This advancement, however, brings to the fore 
the need for sophisticated analytical methods capable of 
managing the resultant data deluge. In this regard, AI-
driven tools for segmentation and detection are becom-
ing increasingly crucial. These tools not only streamline 
the processing of complex datasets but also enable the 
nuanced interpretation of diverse biomarkers, thus 
enhancing the overall utility of TB-PET.

Yet, as we advance in integrating AI into TB-PET, chal-
lenges persist, notably in ensuring the broad applicabil-
ity of algorithms across varied clinical scenarios. The 
development of foundational models, inspired by their 
success in general vision tasks, is a promising avenue 
for overcoming these challenges. Such models, adept 

at segmenting any specified area within medical imag-
ing datasets, hold the potential to revolutionise TB-PET 
analysis by automating essential processes and improv-
ing diagnostic precision. However, the realisation of 
these foundational models, like MedSAM in radiology, 
is contingent on the availability of large-scale, diverse 
datasets and considerable computational resources. The 
PET imaging field currently faces a gap in available data 
volumes, with significant initiatives like AUTOPET [29] 
and HEKTOR [88] providing only a limited number of 
images. This situation underscores an urgent need within 
the PET community for a collective effort in data pooling. 
The prevailing concerns about data protection hindering 
the sharing of PET images must be re-examined. Given 
that high-resolution modalities such as CT have been 
successfully open-sourced, PET imaging should also ven-
ture down this path. It is imperative for the community to 
not only advocate for, but also actively pursue the open 
source availability of PET data subject to patient privacy 
regulations that operate in certain jurisdictions.

The creation of a comprehensive normative data-
base from TB-PET scans further exemplifies the need 
for extensive data pooling. Given the vast variability in 
human physiology, constructing such a database requires 
data from diverse and large population samples, some-
thing that single sites cannot achieve alone. A norma-
tive database, crucial for distinguishing between normal 
and pathological states, would benefit immensely from 
a collaborative approach to data collection and sharing. 
Emulating the open-source successes of radiology could 
significantly accelerate advancements in TB-PET analy-
sis, paving the way for more personalised and effective 
patient care.

Building on the momentum of integrating AI into TB-
PET and addressing the challenges of data availability and 
algorithmic applicability, it is essential to also consider 
the role of AI in enhancing the safety and efficiency of 
PET/CT imaging. This is particularly pertinent in scenar-
ios like low-dose longitudinal studies, paediatric imag-
ing, or screening, where optimising the CT component 
of PET/CT imaging becomes crucial. While TB-PET’s 
increased sensitivity enables inherently low-dose imag-
ing, the radiation dose primarily stems from the CT com-
ponent, necessitating careful consideration in repeated 
imaging scenarios. Advancements in AI offer potential 
solutions to reduce, or in some cases, eliminate the need 
for CT scans even though CT itself already has a role in 
some screening approaches and likely itself to provide 
complementary diagnostic information. Consequently, 
this approach requires a balanced perspective. CT scans 
provide essential anatomical details vital for various TB-
PET data mining applications, including organ segmen-
tation, multiplexing, and creating normative databases. 
These tasks depend heavily on CT as it is challenging to 
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work on PET data due to image variability introduced by 
the tracers. It is crucial to reduce the dose while preserv-
ing the critical diagnostic and analytical value that CT 
imaging brings to TB-PET.

In advancing TB-PET data-mining, the role of Auto-
mated Machine Learning (AutoML) is pivotal. AutoML 
streamlines the process of applying ML algorithms, mak-
ing it more accessible and efficient. It automates crucial 
tasks like model selection, hyperparameter tuning, and 
validation, which are often barriers to effective data anal-
ysis in medical imaging. This automation is particularly 
beneficial in TB-PET, where the data’s multidimension-
ality can be overwhelming and nuanced. With AutoML 
and explainable AI paradigms, researchers and clinicians 
can more readily analyse and interpret complex datasets. 
Importantly, the progress and acceleration of AI and ML 
in TB-PET should take cues from the broader AI com-
munity, especially regarding the open-source movement. 
The rapid advancement in AI fields is partly attributed 
to the community’s commitment to open-sourcing 
and collaborative development, avoiding the pitfalls 
of redundant efforts. A prime example is nnU-Net, an 
open-source framework that has standardised neural 
network applications in medical imaging. Before nnU-
Net, numerous variations of U-Net architectures prolif-
erated, but its introduction streamlined the development 
process, demonstrating that open-source collaboration 
can lead to more efficient and effective solutions.

Building on our previous discussions, it is evident there 
is a pressing need for a unified community initiative to 
consolidate resources, software, and data in TB-PET and 
AI. Currently, these elements are fragmented, imped-
ing the pace of progress. Platforms like enhance.pet 
(https://enhance.pet) serve as a promising model, offer-
ing a centralised web hub for data, software, and educa-
tional resources. Similarly, the National PET Imaging 
Platform (NPIP, https://npip.org.uk/) represents another 
step in the right direction, aiming to create a cohesive 
framework for advancing PET imaging through shared 
resources and collective expertise.

Conclusion
In conclusion, this manuscript has comprehensively 
explored the transformative role of AI in elevating the 
capabilities of TB-PET/CT imaging. As we have eluci-
dated, the integration of AI not only augments the effi-
ciency of TB-PET but also unlocks novel applications in 
both clinical and research settings. However, the journey 
towards fully realising the potential of AI in TB-PET is 
not just a technological challenge but a collaborative 
endeavour. It calls for the dismantling of data silos, the 
creation of open-source tools, and the establishment of 
platforms for knowledge and resource exchange.
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