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Abstract
Background Low-dose computed tomography (LDCT) has been shown useful in early lung cancer detection. This 
study aimed to develop a novel deep learning model for detecting pulmonary nodules on chest LDCT images.

Methods In this secondary analysis, three lung nodule datasets, including Lung Nodule Analysis 2016 (LUNA16), 
Lung Nodule Received Operation (LNOP), and Lung Nodule in Health Examination (LNHE), were used to train and 
test deep learning models. The 3D region proposal network (RPN) was modified via a series of pruning experiments 
for better predictive performance. The performance of each modified deep leaning model was evaluated based 
on sensitivity and competition performance metric (CPM). Furthermore, the performance of the modified 3D RPN 
trained on three datasets was evaluated by 10-fold cross validation. Temporal validation was conducted to assess the 
reliability of the modified 3D RPN for detecting lung nodules.

Results The results of pruning experiments indicated that the modified 3D RPN composed of the Cross Stage 
Partial Network (CSPNet) approach to Residual Network (ResNet) Xt (CSP-ResNeXt) module, feature pyramid network 
(FPN), nearest anchor method, and post-processing masking, had the optimal predictive performance with a CPM 
of 92.2%. The modified 3D RPN trained on the LUNA16 dataset had the highest CPM (90.1%), followed by the LNOP 
dataset (CPM: 74.1%) and the LNHE dataset (CPM: 70.2%). When the modified 3D RPN trained and tested on the same 
datasets, the sensitivities were 94.6%, 84.8%, and 79.7% for LUNA16, LNOP, and LNHE, respectively. The temporal 
validation analysis revealed that the modified 3D RPN tested on LNOP test set achieved a CPM of 71.6% and a 
sensitivity of 85.7%, and the modified 3D RPN tested on LNHE test set had a CPM of 71.7% and a sensitivity of 83.5%.

Conclusion A modified 3D RPN for detecting lung nodules on LDCT scans was designed and validated, which may 
serve as a computer-aided diagnosis system to facilitate lung nodule detection and lung cancer diagnosis.

Key message
The optimal 3D RPN for detecting lung nodules in chest CT was established.
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Introduction
Lung cancer is the most common cause of global cancer 
incidence and cancer-related deaths [1]. The aggressive 
and heterogeneous nature of lung cancer has precluded 
efforts to increase early detection via screening with 
chest radiography or sputum evaluation [2]. Clinical tri-
als have proven that low-dose computed tomography 
(LDCT) for early lung cancer detection decreases mor-
tality by 20% compared with chest X-rays [2]. LDCT pro-
vides detailed representation of the lung parenchyma and 
notable sensitivity to findings associated with early lung 
cancer, primarily lung nodules [3–5]. However, LDCT 
screening generates 300–500 images per patient, impos-
ing an overwhelming burden on radiologists. To reduce 
this load, deep-learning techniques are being used to 
develop computer-aided detection (CAD) systems to 
screen for pulmonary nodules.

The main tasks of CAD systems for pulmonary nod-
ule screening are nodule detection and characterization 
to eliminate false positives [6]. Deep-learning models for 
lung nodule analysis are trained to detect and classify 
nodules using a large set of labeled data (CT scans) and a 
convolutional neural network (CNN)-based algorithm [7, 
8]. The performance of object detection systems has been 
improved by the addition of regional proposal networks 
(RPN) such as Faster R-CNN [9] that tell the CNN mod-
ule where to look for objects.

Several lines of evidence indicated that 3D CNNs 
achieved higher competition performance metrics 
(CPMs) than their 2D counterparts for detecting lung 
nodules [10–13]. However, 3D CNNs are still in the ini-
tial stages of development [6, 11]. Several deep-learning 
techniques for 2D object detection, including the Resid-
ual Network (ResNet) module [14], the ResNeXt module 
[15], the Feature Pyramid Network (FPN) [5], and anchor 
assignment [16, 17], have been adapted successfully to 
improve the performance of 3D object detection. The 
development of 3D CAD systems for lung nodule detec-
tion was further promoted by the LUNA16 Challenge, 
which supplied the research community with a frame-
work for testing and comparing algorithms on a common 
large database with a standardized evaluation protocol 
[18].

Using module substitution and pruning experi-
ments, this study aims to develop a deep learning model 
for detecting pulmonary nodules in CT images with 
improved performance over existing systems by modi-
fying the 3D RPN derived from a 2D object detection 
model based on Faster R-CNN, called RetinaNet [5, 
9, 19]. By training and testing the model on 3 datasets 
representing patients with different demographic back-
grounds, the study aims to broaden the application of the 
modified 3D RPN.

Methods
Lung nodule datasets
In this secondary data analysis, three datasets of lung 
modules acquired on LDCT were used to evaluate the 
performance of the modified 3D RPN in this study. 
The Lung Nodule Analysis 2016 (LUNA16) dataset is 
the largest public dataset, comprising 1186 lung nod-
ules from 888 patients [18]. This dataset has been used 
widely to evaluate a variety of deep-learning–based pul-
monary nodule detection methods [7, 20–22]. In addi-
tion, two private ongoing pulmonary nodule datasets 
maintained by the Radiology Department at the National 
Cheng Kung University Hospital (NCKUH) were used in 
this study: the NCKUH Lung Nodule received Opera-
tion (LNOP) dataset that included patients undergo-
ing surgical resection for lung nodules with histological 
confirmation, and the NCKUH Lung Nodule in Health 
Examination (LNHE) dataset that included patients with 
lung nodules that were found by LDCT.

The LUNA16 dataset contains 1186 lung nodules. To 
minimize the bias caused by variation in nodule num-
ber, approximate 1000 pulmonary nodules were retrieved 
from LNOP and LNHE datasets. Therefore, the data 
of 1027 lung nodules derived from 708 patients, which 
were collected in the LNOP dataset from Dec. 2018 to 
Dec. 2021, were retrieved for training and testing deep 
learning models. In addition, the data of 1000 lung nod-
ules derived from 420 patients, which were collected in 
the LNHE from Jan. 2019 to Dec. 2020, were used in this 
study.

Moreover, for temporal validation, the whole 1027 and 
1000 lung nodules from LNOP and LNHE, respectively, 
were used as train sets. Additional 348 and 500 lung 

The modified 3D RPN trained on the LUNA16 dataset had a higher CPM.
But CMP dropped if the modified 3D RPN trained on Taiwanese datasets.

Summary statement
A modified 3D RPN for detecting lung nodules on CT images that exhibited greater sensitivity and CPM than did 
several previously reported CAD detection models was established.
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nodules that were recently collected in LNOP and LNHE, 
respectively, were used as test sets.

Data annotation
The regions of interest (ROIs) of pulmonary nodules on 
axial images were manually labeled slice by slice by a 
thoracic radiologist (C.L.) and a thoracic surgeon (C.C.). 
After reaching consensus, 2D ROIs were converted to 
form 3D ROI. The 3D ROI of lung nodule was defined as 
the ground truth in this study.

3D region proposal network
The architecture of the proposed 3D RPN consisted of 
three blocks: backbone, neck, and head (Fig.  1A). The 
backbone network is used for feature extraction; the neck 
is used for feature fusion; and the head is used for dense 
prediction, which generates a prediction frame (anchor 
box) for each anchor point on the feature map. The train-
ing environment and training strategy is listed in Table 1.

Architecture and modification of the pulmonary nodule 
detection system
The architecture of the 3D lung-nodule detection sys-
tem is composed of three modules: pre-processing, deep 
learning model (3D RPN), and post-processing (Fig. 1B). 
3D patch-based image input was adopted for pre-pro-
cessing and post-processing. In the pre-processing mod-
ule, to resample all CT images to the same size, the voxel 
spacing of all CT images was resampled to 1:1:1  mm. 
Each radiodensity value was converted from Houn-
sfield units (HU) (range, − 1200 to 600 HU) to a decimal 
between 0 and 1 and stored as a single-precision floating-
point number. In the post-processing module, the extra-
pulmonary region is removed to reduce the false positive.

Pruning experiments
In the training, a series of pruning experiments were 
performed using the LUNA16 dataset to modify each 

Table 1 The training environment and training strategy
Training environment
OS: Windows 10 (64-bit)
CPU: Intel Core i7-9700 H @ 3.00 GHz
GPU: Single NVIDIA GeForce RTX 2070–8GB
RAM: 24GB
Deep learning framework: Pytorch
Training strategy
Optimizer: Ranger (with Gradient Centralization)
Learning rate: 0.001
Epoch: 200
Data augmentation method:
Randomly fliping in xy plane
Randomly rotating 0 ~ 180 degrees on the z-axis
Random scaling 0.75 ~ 1.25 times

Fig. 1 The architectural architecture of deep learning model. (A) 3D RPN. The boxes with anchor sizes of 5, 10, and 20 voxel sizes in each layer of detectors 
were used in the head block. Because the outputs included probability, x, y, z, d, the dimensions of each layer were 3* 5 = 15. (B) The complete pulmonary 
nodule detection system
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block of the 3D RPN for better performance. Although 
the ResNet module is commonly used to construct the 
backbone network [9], we first replaced the ResNet mod-
ule with the ResNeXt module in the training phase [15]. 
Subsequently, the design of the Cross Stage Partial Net-
work (CSPNet) [23], was incorporated into the ResNeXt 
module to form the CSP-ResNeXt module (Fig.  2). The 
FPN design was then added to the neck and detector of 
the selected 3D RPN with the CSP-ResNeXt module, 
achieving feature fusion and multi-level outputs on the 
neck and detector. The next pruning experiment involved 
modification of the anchor assignment of the 3D RPN.

Nearest anchor assignment
Anchor assignment, also called training sample selection, 
is the training of an object detection model to decide 
which anchor boxes on the input image patch are posi-
tive, negative, or ignored samples based on the ground 
truth in the training phase [9]. Only positive and negative 
samples are involved in the used for calculating the loss 
function. Because most lung nodules were almost spheri-
cal in shape with varied sizes, the boxes with anchor sizes 
of 5, 10, and 20 voxel sizes in each layer of detectors were 
used in the head block of 3D RPN (Fig. 1A). Several stud-
ies of object detection have used fixed Intersection over 
Union (IoU) matching for anchor assignment [5, 24]; 
however, the IoU matching method often results in mul-
tiple positive samples (Fig. 3).

To search for a more suitable anchor assignment 
method for 3D lung nodule detection, we applied the 
nearest anchor method in this study. The nearest anchor 
method assigned the only one anchor box with anchor 
point closest to the ground truth as the positive anchor 
(Fig.  3). If multiple anchor boxes shared a common 
anchor point, only the anchor box closest to the ground 
truth in size was selected as the positive sample.

Performance evaluation measures
The modified 3D RPN was then trained on the LUNA16, 
LNOP, and LNHE datasets. The performance of the mod-
ified 3D RPN was evaluated by 10-fold cross-validation 
using free-response receiver operating characteristic 
(FROC) and CPM. The FROC is the curve drawn by the 
model showing the true positive rate under different con-
fidence thresholds. The average recall rate (sensitivity) 
was defined at 0.125, 0.25, 0.5, 1, 2, 4, and 8 false positives 
per scan as previously described [25, 26]. CPM, a metric 
derived from FROC, was the average recall of 7 specific 
false positives per scan on the FROC. CPM and sensitiv-
ity were expressed as mean ± standard deviation (SD). 
After training, the modified 3D RPN was then tested on 
the LUNA16, LNOP, and LNHE test sets, with the aver-
age recall rate set at 2 false positives per scan.

Fig. 2 The CSPNet and ResNeXt modules are integrated into the design of the backbone network
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Results
Comparison of pulmonary nodule characteristics between 
the three datasets
The distribution of the 3D maximum diameter of 
each nodule for three datasets is shown in Fig. 4A. The 
LUNA16 dataset had a right-skewed distribution with 
a largest 3D maximum diameter of 32  mm. Lung nod-
ules in the LNOP dataset were larger than those in the 
LUNA16 dataset, with the largest 3D maximum diam-
eter at 93 mm. Lung nodules in the LNHE dataset were 
smaller than those in the LNOP dataset, with the largest 
3D maximum diameter at 43 mm.

The distribution of solid-component percentage of each 
nodule in the LNOP dataset was right-skewed, with near 
40% of nodules having 10% solid component (Fig. 4B). In 
contrast, the distribution of lung nodule solid-compo-
nent percentage was relatively evenly distributed in the 
LUNA16 dataset (Fig. 4B).

Modification of the 3D RPN
To improve the 3D RPN, a series of pruning experiments 
was conducted using the LUNA16 dataset. The perfor-
mance evaluation revealed that the CPMs for the ResNet, 
ResNeXt, and CSP-ResNeXt modules were 86.8%, 88.2%, 
and 89.7%, respectively (Table  2). After adding the FPN 
design to the CSP-ResNeXt module, the CPM improved 
from 89.7 to 90.1% (Table  2). Although the IoU match-
ing method has been widely used in several studies, the 
nearest anchor method achieved a slightly higher CPM 
(92.2% vs. 91.1%) (Table 2).

Performance of the modified 3D RPN
Of the three datasets, the modified 3D RPN trained on 
the LUNA16 dataset had highest sensitivities at various 
numbers of false positives per scan, while the modified 
3D RPN trained on the LNHE dataset had the lowest 
sensitivities (Table 3). In addition, the modified 3D RPN 
trained on the LUNA16 dataset had the highest CPM 
(90.1%), followed by the LNOP (CPM, 74.1%) and the 
LNHE (CPM, 70.2%) (Table 3).

Furthermore, the modified 3D RPN trained and tested 
on the same datasets had sensitivities of 94.6%, 84.8%, 
and 79.7% for LUNA16, LNOP, and LNHE, respectively 
(Table 4). The sensitivity dropped substantially if the test 
set differed from the training set.

Temporal validation
To confirm the predictive performance of the modi-
fied 3D RPN, temporal validation was performed. The 
modified 3D RPN tested on LNOP and LNHE test sets 
achieved CPM of 71.6% and 71.7% (Table  5). The CMP 
of modified 3D RPN on LNOP test set slightly decreased 

Table 2 Pruning experiments for modification of the 3D region 
proposal network
Backbone FPN Anchor Assignment CPM
ResNet 86.8%
ResNeXt 88.2%
CSP-ResNeXt 89.7%
CSP-ResNeXt ✓ 90.1%
CSP-ResNeXt ✓ IoU matching 91.1%
CSP-ResNeXt ✓ Nearest anchor 92.2%
Abbreviations: FPN, feature pyramid network; CMP, competition performance 
metric

Fig. 3 Illustration of the nearest anchor method. The IoU-based method could recognize both blue and yellow anchor boxes as positive samples. In con-
trast, the nearest anchor method recognized the blue anchor as the positive anchor, because it had an anchor point closest to the ground truth (green)
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from 74.1 to 71.6%, while the CMP of modified 3D RPN 
on LNHE test set slightly increased from 70.2 to 71.7%. 
Under the most clinically acceptable condition (false 
positive per scan = 2), the sensitivity of LNOP test set 
increased from 84.8 to 85.7%, and the sensitivity of LNHE 
test set increased from 79.7 to 83.5% (Table 5).

The influence of solid components of nodules
To assess the extent to which percentages of solid compo-
nents of lung nodules affect the predictive performance 
of the modified 3D RPN, stratification analyses were 

performed. Each of the three datasets, LUNA16, LNOP, 
and LNHE, was stratified by the percentages of solid 
components of nodules into three ranges: 0 to 10%, 10 
to 50%, and 50 to 100%. Subsequently, the performance 
of the modified 3D RPN trained on each dataset strati-
fied by the solid component range was examined. Within 
each data source, the performance of the modified 3D 
RPN increased with the percentages of solid components 
of nodules (Table 6). Among data sources, LUNA16 had 
higher CPM rates than LNOP and LNHE.

Discussion
Pruning experiments on the 3D RPN with module sub-
stitutions showed that the optimal 3D RPN contained the 
CSP-ResNeXt module, FPN, nearest anchor method, and 
post-processing masking, achieving a CPM of 91.1%. The 
modified 3D RPN trained on the LUNA16 dataset had 
the highest CPM (90.1%), followed by the LNOP (74.1%) 
and the LNHE (70.2%) datasets. The modified 3D RPN 
trained and tested on the same dataset had the high-
est sensitivity (LUNA16, 94.6%; LNOP, 84.8%; LNHE, 

Table 3 Performance comparison of the modified 3D RPN trained on three datasets†

Number of false positives per 
scan

Sensitivity CPM
0.125 0.25 0.5 1 2 4 8

Data source
LUNA16 77.0%±2.9% 84.3%±2.6% 89.4%±2.4% 92.5%±1.9% 94.6%±1.5% 96.0%±1.0% 96.6%±0.7% 90.1%±1.4%
LNOP 45.9%±5.4% 58.3%±4.1% 67.4%±3.3% 76.9%±3.4% 84.8%±3.5% 91.0%±2.5% 94.6%±2.5% 74.1%±3.1%
LNHE 46.9%±3.4% 54.6%±5.5% 63.1%±4.3% 71.7%±3.0% 79.7%±3.2% 85.7%±2.2% 89.7%±2.9% 70.2%±2.1%
†Values represent the pulmonary nodule detection sensitivities (%) according to the number of false positives per CT scan

The results were expressed as mean ± SD.

Table 4 Sensitivity comparison of the modified 3D PRN trained 
and tested on various combinations of datasets at 2 false 
positives per scan

Training dataset
LUNA16 LNOP LNHE

Test 
dataset

LUNA16 94.6% ± 1.5% 63.4% ± 2.6% 45.5% ± 1.7%
LNOP 78.6% ± 2.3% 84.8% ± 3.5% 50.0% ± 3.7%
LNHE 67.0% ± 2.2% 78.2% ± 2.5% 79.7% ± 3.2%

The results were expressed as mean ± SD.

Table 5 Performance of the modified 3D RPN on test datasets†

Number of false positives per scan Sensitivity CPM
0.125 0.25 0.5 1 2 4 8

Test dataset
LNOP 44.5% 53.7% 59.2% 76.9% 85.7% 91.6% 94.1% 71.6%
LNHE 45.3% 53.2% 62.6% 74.8% 83.5% 88.5% 94.2% 71.7%
†Values represent the pulmonary nodule detection sensitivities (%) according to the number of false positives per CT scan

Table 6 Performance comparison of the modified 3D RPN trained on three datasets stratified by the range of solid components of 
nodules
Number of false positive per scan Sensitivity CPM

0.125 0.25 0.5 1 2 4 8
Data source Solid component range
LUNA16 0 to 10% 72.1% 0.779 81.7% 84.6% 85.6% 88.5% 88.5% 82.7%

10 to 50% 81.3% 0.859 93.0% 94.5% 96.1% 96.1% 96.1% 91.9%
50 to 100% 80.4% 0.893 92.9% 92.9% 95.5% 97.3% 97.3% 92.2%

LNOP 0 to 10% 35.0% 41.7% 53.3% 66.7% 83.3% 91.7% 95.0% 66.7%
10 to 50% 45.8% 56.2% 68.8% 78.4% 88.1% 95.9% 97.9% 75.9%
50 to 100% 45.3% 60.6% 67.2% 80.4% 91.2% 96.4% 98.9% 77.1%

LNHE 0 to 10% 42.9% 45.7% 60.0% 74.3% 77.1% 85.7% 91.4% 68.2%
10 to 50% 53.8% 55.8% 61.5% 75.0% 78.8% 88.5% 94.2% 72.5%
50 to 100% 51.6% 57.9% 63.6% 79.3% 88.3% 90.9% 94.5% 75.2%
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79.7%). Furthermore, the reliability of the modified 3D 
RPN was confirmed by temporal validation.

Comparison of pulmonary nodule characteristics 
between the three datasets showed that nodules in the 
CT images from patients in the LNOP dataset (Taiwan-
ese patients with histologically-confirmed lung nodules) 
and LNHE dataset (Taiwanese patients with nodules 
found during health examination) were larger and had 
a greater non-solid component than did those in the 
LUNA16 dataset (Western patients) (Fig.  4). This find-
ing is consistent with reports showing that Asian patients 
tend to have a higher proportion of non-solid pulmonary 
nodules [27], which have a ground-glass opacity on CT 
images [28]. This difference in nodule properties between 
populations may contribute to the differences in perfor-
mance of our model on the 3 datasets, suggesting the 
importance of considering ethnicity factors in datasets 
used for training and testing diagnostic deep-learning 
models.

Accurate classification of ground glass nodules is of 
great therapeutic value, as they are associated with both 
benign inflammatory conditions and various types of 
malignancy [29, 30]. In addition, consolidation-to-tumor 

ratio is positively associated with tumor invasiveness [31]. 
Because of their optical properties, ground glass nodules 
may be undetected in CT scans, and deep-learning algo-
rithms are being developed to distinguish these nodules 
from surrounding tissues [23, 32]. Our finding that the 
LNOP dataset is enriched in data for non-solid nodules 
as compared to the LUNA16 dataset suggests that the 
LNOP may be useful in the development of algorithms 
for detecting and classifying ground glass nodules.

As shown in Supplementary Table S1, the CPM and 
sensitivity of our modified Faster R-CNN-based 3D 
RPN on the LUNA16 dataset surpassed that of other 
CAD models for lung nodule detection. DeepLung [22], 
a 3D Faster R-CNN designed for nodule detection with 
3D dual path blocks and a U-net-like encoder-decoder 
structure and a gradient boosting machine with 3D dual 
path network features for nodule classification; Deep-
SEED [20], which has an encoder-decoder structure in 
conjunction with a RPN and uses dynamically-scaled 
cross entropy loss to reduce false positives and combat 
the sample imbalance problem associated with nodule 
detection; CPM-Net [7], a 3D center-points matching 
detection network that is anchor-free and automatically 

Fig. 4 Characteristics of lung nodules in three datasets. (A) Distribution of 3D maximum diameter of each nodule. (B) Distribution of percentage of solid 
component in each nodule
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predicts the position, size, and aspect ratio of nodules; 
and SCPM-Net [21], a 3D sphere representation-based 
center-points matching detection network that is anchor-
free and automatically predicts the position, radius, 
and offset of nodules without manual design of nodule/
anchor parameters.

The present secondary data analysis has several limi-
tations. The modified 3D RPN model is complex, con-
taining 1,284,508 parameters, requiring about 80  hours 
to perform 10-fold cross validation on a dataset of 1000 
lung nodules. In future studies, we aim to shorten the 
training time by simplifying the model without sacrific-
ing specificity. In addition, it has been reported that CT 
manufacture did not affect performance of deep leaning 
model for detecting lung nodules [33]. In contrast, recon-
struction kernel affected texture features and wavelet 
features of CT images [34], and the poor image quality 
resulted in more false positives per scan. The investiga-
tion of the influence of CT hardware, reconstruction ker-
nels, and image quality on performance of the modified 
3D RPN will be another future research direction. Fur-
thermore, the improved 3D RPN model will be trained 
on the updated LNOP and LNHE datasets with more 
lung nodule data. We will also try to access more power-
ful hardware to speed up the lung nodule detection pro-
cess. To reduce false positives, we will add a false-positive 
reduction model to the modified 3D RPN model.

Conclusion
The modified 3D RPN model trained on the LUNA16 
dataset exhibited a sensitivity of 96.6% at 8 false posi-
tives per scan and a CPM of 90.1%, which may serve as 
a potential CAD tool to facilitate lung nodule detection 
and of lung cancer diagnosis. In addition, the difference 
in performance between datasets comprising Western 
and Asian patients indicates the need for establishing 
training and testing datasets specific to Asian patients. 
The LNOP dataset may be useful for training and testing 
CAD models to identify lung nodules with ground glass 
opacity, which are associated with malignancy and tumor 
invasiveness.
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